論文の概要: Targeted Learning for Data Fairness
- arxiv url: http://arxiv.org/abs/2502.04309v1
- Date: Thu, 06 Feb 2025 18:51:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:34:00.185895
- Title: Targeted Learning for Data Fairness
- Title(参考訳): データフェアネスのためのターゲット学習
- Authors: Alexander Asemota, Giles Hooker,
- Abstract要約: データ生成プロセス自体の公平性を評価することにより、公平性推論を拡張する。
我々は、人口統計学的平等、平等機会、条件付き相互情報から推定する。
提案手法を検証するため,いくつかのシミュレーションを行い,実データに適用する。
- 参考スコア(独自算出の注目度): 52.59573714151884
- License:
- Abstract: Data and algorithms have the potential to produce and perpetuate discrimination and disparate treatment. As such, significant effort has been invested in developing approaches to defining, detecting, and eliminating unfair outcomes in algorithms. In this paper, we focus on performing statistical inference for fairness. Prior work in fairness inference has largely focused on inferring the fairness properties of a given predictive algorithm. Here, we expand fairness inference by evaluating fairness in the data generating process itself, referred to here as data fairness. We perform inference on data fairness using targeted learning, a flexible framework for nonparametric inference. We derive estimators demographic parity, equal opportunity, and conditional mutual information. Additionally, we find that our estimators for probabilistic metrics exploit double robustness. To validate our approach, we perform several simulations and apply our estimators to real data.
- Abstract(参考訳): データとアルゴリズムは、差別と異なる治療を生み出し、永続する可能性がある。
そのため、アルゴリズムの不公平な結果を定義し、検出し、排除するためのアプローチの開発に多大な努力が注がれている。
本稿では,フェアネスの統計的推測に焦点をあてる。
フェアネス推論における先行研究は、与えられた予測アルゴリズムのフェアネス特性を推定することに集中してきた。
ここでは、データ生成プロセス自体の公平性を評価することにより、公正性推論を拡張する。
非パラメトリック推論のための柔軟なフレームワークであるターゲット学習を用いて、データフェアネスの推論を行う。
我々は、人口統計学的平等、平等機会、条件付き相互情報から推定する。
さらに、確率的指標に対する推定器が二重強靭性を悪用していることが判明した。
提案手法を検証するため,いくつかのシミュレーションを行い,実データに適用する。
関連論文リスト
- Achievable Fairness on Your Data With Utility Guarantees [16.78730663293352]
機械学習の公平性において、異なるセンシティブなグループ間の格差を最小限に抑えるトレーニングモデルは、しばしば精度を低下させる。
本稿では,各データセットに適合する公平性-正確性トレードオフ曲線を近似する計算効率のよい手法を提案する。
そこで我々は,モデルフェアネスを監査するための堅牢な枠組みを実践者に提供し,評価の不確実性を定量化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-27T00:59:32Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - On Learning and Testing of Counterfactual Fairness through Data
Preprocessing [27.674565351048077]
機械学習は実生活における意思決定においてますます重要になっているが、人々は不適切な使用によってもたらされる倫理的問題を懸念している。
最近の研究は、機械学習の公正性に関する議論を因果的枠組みに持ち込み、対実的公正性の概念を精査している。
偏りのあるトレーニングデータから対実的に公正な決定を学習するために,dAta前処理(FLAP)アルゴリズムを用いてフェアラーニングを開発する。
論文 参考訳(メタデータ) (2022-02-25T00:21:46Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Fair Densities via Boosting the Sufficient Statistics of Exponential
Families [72.34223801798422]
フェアネスのためのデータ前処理にブースティングアルゴリズムを導入する。
私たちのアプローチは、最小限の公平性を確保しながら、より良いデータフィッティングへとシフトします。
実世界のデータに結果の質を示す実験結果が提示される。
論文 参考訳(メタデータ) (2020-12-01T00:49:17Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。