Multiscale Video Pretraining for Long-Term Activity Forecasting
- URL: http://arxiv.org/abs/2307.12854v1
- Date: Mon, 24 Jul 2023 14:55:15 GMT
- Title: Multiscale Video Pretraining for Long-Term Activity Forecasting
- Authors: Reuben Tan, Matthias De Lange, Michael Iuzzolino, Bryan A. Plummer,
Kate Saenko, Karl Ridgeway, Lorenzo Torresani
- Abstract summary: Multiscale Video Pretraining learns robust representations for forecasting by learning to predict contextualized representations of future video clips over multiple timescales.
MVP is based on our observation that actions in videos have a multiscale nature, where atomic actions typically occur at a short timescale and more complex actions may span longer timescales.
Our comprehensive experiments across the Ego4D and Epic-Kitchens-55/100 datasets demonstrate that MVP out-performs state-of-the-art methods by significant margins.
- Score: 67.06864386274736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Long-term activity forecasting is an especially challenging research problem
because it requires understanding the temporal relationships between observed
actions, as well as the variability and complexity of human activities. Despite
relying on strong supervision via expensive human annotations, state-of-the-art
forecasting approaches often generalize poorly to unseen data. To alleviate
this issue, we propose Multiscale Video Pretraining (MVP), a novel
self-supervised pretraining approach that learns robust representations for
forecasting by learning to predict contextualized representations of future
video clips over multiple timescales. MVP is based on our observation that
actions in videos have a multiscale nature, where atomic actions typically
occur at a short timescale and more complex actions may span longer timescales.
We compare MVP to state-of-the-art self-supervised video learning approaches on
downstream long-term forecasting tasks including long-term action anticipation
and video summary prediction. Our comprehensive experiments across the Ego4D
and Epic-Kitchens-55/100 datasets demonstrate that MVP out-performs
state-of-the-art methods by significant margins. Notably, MVP obtains a
relative performance gain of over 20% accuracy in video summary forecasting
over existing methods.
Related papers
- VEDIT: Latent Prediction Architecture For Procedural Video Representation Learning [59.68917139718813]
We show that a strong off-the-shelf frozen pretrained visual encoder can achieve state-of-the-art (SoTA) performance in forecasting and procedural planning.
By conditioning on frozen clip-level embeddings from observed steps to predict the actions of unseen steps, our prediction model is able to learn robust representations for forecasting.
arXiv Detail & Related papers (2024-10-04T14:52:09Z) - From Recognition to Prediction: Leveraging Sequence Reasoning for Action Anticipation [30.161471749050833]
We propose a novel end-to-end video modeling architecture that utilizes attention mechanisms, named Anticipation via Recognition and Reasoning (ARR)
ARR decomposes the action anticipation task into action recognition and reasoning tasks, and effectively learns the statistical relationship between actions by next action prediction (NAP)
In addition, to address the challenge of relationship modeling that requires extensive training data, we propose an innovative approach for the unsupervised pre-training of the decoder.
arXiv Detail & Related papers (2024-08-05T18:38:29Z) - PALM: Predicting Actions through Language Models [74.10147822693791]
We introduce PALM, an approach that tackles the task of long-term action anticipation.
Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details.
Our experimental results demonstrate that PALM surpasses the state-of-the-art methods in the task of long-term action anticipation.
arXiv Detail & Related papers (2023-11-29T02:17:27Z) - Temporal DINO: A Self-supervised Video Strategy to Enhance Action
Prediction [15.696593695918844]
This paper introduces a novel self-supervised video strategy for enhancing action prediction inspired by DINO (self-distillation with no labels)
The experimental results showcase significant improvements in prediction performance across 3D-ResNet, Transformer, and LSTM architectures.
These findings highlight the potential of our approach in diverse video-based tasks such as activity recognition, motion planning, and scene understanding.
arXiv Detail & Related papers (2023-08-08T21:18:23Z) - Rethinking Learning Approaches for Long-Term Action Anticipation [32.67768331823358]
Action anticipation involves predicting future actions having observed the initial portion of a video.
We introduce ANTICIPATR which performs long-term action anticipation.
We propose a two-stage learning approach to train a novel transformer-based model.
arXiv Detail & Related papers (2022-10-20T20:07:30Z) - The Wisdom of Crowds: Temporal Progressive Attention for Early Action
Prediction [104.628661890361]
Early action prediction deals with inferring the ongoing action from partially-observed videos, typically at the outset of the video.
We propose a bottleneck-based attention model that captures the evolution of the action, through progressive sampling over fine-to-coarse scales.
arXiv Detail & Related papers (2022-04-28T08:21:09Z) - Anticipative Video Transformer [105.20878510342551]
Anticipative Video Transformer (AVT) is an end-to-end attention-based video modeling architecture.
We train the model jointly to predict the next action in a video sequence, while also learning frame feature encoders that are predictive of successive future frames' features.
arXiv Detail & Related papers (2021-06-03T17:57:55Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - TTPP: Temporal Transformer with Progressive Prediction for Efficient
Action Anticipation [46.28067541184604]
Video action anticipation aims to predict future action categories from observed frames.
Current state-of-the-art approaches mainly resort to recurrent neural networks to encode history information into hidden states.
This paper proposes a simple yet efficient Temporal Transformer with Progressive Prediction framework.
arXiv Detail & Related papers (2020-03-07T07:59:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.