Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model
- URL: http://arxiv.org/abs/2403.13324v1
- Date: Wed, 20 Mar 2024 06:04:05 GMT
- Title: Out-of-Distribution Detection Using Peer-Class Generated by Large Language Model
- Authors: K Huang, G Song, Hanwen Su, Jiyan Wang,
- Abstract summary: Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models.
In this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model.
Experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Out-of-distribution (OOD) detection is a critical task to ensure the reliability and security of machine learning models deployed in real-world applications. Conventional methods for OOD detection that rely on single-modal information, often struggle to capture the rich variety of OOD instances. The primary difficulty in OOD detection arises when an input image has numerous similarities to a particular class in the in-distribution (ID) dataset, e.g., wolf to dog, causing the model to misclassify it. Nevertheless, it may be easy to distinguish these classes in the semantic domain. To this end, in this paper, a novel method called ODPC is proposed, in which specific prompts to generate OOD peer classes of ID semantics are designed by a large language model as an auxiliary modality to facilitate detection. Moreover, a contrastive loss based on OOD peer classes is devised to learn compact representations of ID classes and improve the clarity of boundaries between different classes. The extensive experiments on five benchmark datasets show that the method we propose can yield state-of-the-art results.
Related papers
- Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Diversity-grounded Channel Prototypical Learning for Out-of-Distribution Intent Detection [18.275098909064127]
This study presents a novel fine-tuning framework for large language models (LLMs)
We construct semantic prototypes for each ID class using a diversity-grounded prompt tuning approach.
For a thorough assessment, we benchmark our method against the prevalent fine-tuning approaches.
arXiv Detail & Related papers (2024-09-17T12:07:17Z) - Envisioning Outlier Exposure by Large Language Models for Out-of-Distribution Detection [71.93411099797308]
Out-of-distribution (OOD) samples are crucial when deploying machine learning models in open-world scenarios.
We propose to tackle this constraint by leveraging the expert knowledge and reasoning capability of large language models (LLM) to potential Outlier Exposure, termed EOE.
EOE can be generalized to different tasks, including far, near, and fine-language OOD detection.
EOE achieves state-of-the-art performance across different OOD tasks and can be effectively scaled to the ImageNet-1K dataset.
arXiv Detail & Related papers (2024-06-02T17:09:48Z) - EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Exploring Large Language Models for Multi-Modal Out-of-Distribution
Detection [67.68030805755679]
Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class.
In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs.
arXiv Detail & Related papers (2023-10-12T04:14:28Z) - Class Relevance Learning For Out-of-distribution Detection [16.029229052068]
This paper presents an innovative class relevance learning method tailored for OOD detection.
Our method establishes a comprehensive class relevance learning framework, strategically harnessing interclass relationships within the OOD pipeline.
arXiv Detail & Related papers (2023-09-21T08:38:21Z) - From Global to Local: Multi-scale Out-of-distribution Detection [129.37607313927458]
Out-of-distribution (OOD) detection aims to detect "unknown" data whose labels have not been seen during the in-distribution (ID) training process.
Recent progress in representation learning gives rise to distance-based OOD detection.
We propose Multi-scale OOD DEtection (MODE), a first framework leveraging both global visual information and local region details.
arXiv Detail & Related papers (2023-08-20T11:56:25Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
Out-of-distribution (OOD) detection identifies test samples that differ from the training data, which is critical to ensuring the safety and reliability of machine learning (ML) systems.
We propose a general-purpose weakly-supervised OOD detection framework, called WOOD, that combines a binary classifier and a contrastive learning component.
We evaluate the proposed WOOD model on multiple real-world datasets, and the experimental results demonstrate that the WOOD model outperforms the state-of-the-art methods for multi-modal OOD detection.
arXiv Detail & Related papers (2023-07-24T18:50:49Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Enhancing Out-of-Distribution Detection in Natural Language
Understanding via Implicit Layer Ensemble [22.643719584452455]
Out-of-distribution (OOD) detection aims to discern outliers from the intended data distribution.
We propose a novel framework based on contrastive learning that encourages intermediate features to learn layer-specialized representations.
Our approach is significantly more effective than other works.
arXiv Detail & Related papers (2022-10-20T06:05:58Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods.
We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem.
We also show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function.
arXiv Detail & Related papers (2022-06-20T16:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.