An Explainable Geometric-Weighted Graph Attention Network for
Identifying Functional Networks Associated with Gait Impairment
- URL: http://arxiv.org/abs/2307.13108v1
- Date: Mon, 24 Jul 2023 19:57:21 GMT
- Title: An Explainable Geometric-Weighted Graph Attention Network for
Identifying Functional Networks Associated with Gait Impairment
- Authors: Favour Nerrise (1), Qingyu Zhao (2), Kathleen L. Poston (3), Kilian M.
Pohl (2), Ehsan Adeli (2) ((1) Department of Electrical Engineering, Stanford
University, Stanford, CA, USA, (2) Dept. of Psychiatry and Behavioral
Sciences, Stanford University, Stanford, CA, USA, (3) Dept. of Neurology and
Neurological Sciences, Stanford University, Stanford, CA, USA)
- Abstract summary: One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes.
Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression.
We present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive
loss of postural reflexes, which eventually leads to gait difficulties and
balance problems. Identifying disruptions in brain function associated with
gait impairment could be crucial in better understanding PD motor progression,
thus advancing the development of more effective and personalized therapeutics.
In this work, we present an explainable, geometric, weighted-graph attention
neural network (xGW-GAT) to identify functional networks predictive of the
progression of gait difficulties in individuals with PD. xGW-GAT predicts the
multi-class gait impairment on the MDS Unified PD Rating Scale (MDS-UPDRS). Our
computational- and data-efficient model represents functional connectomes as
symmetric positive definite (SPD) matrices on a Riemannian manifold to
explicitly encode pairwise interactions of entire connectomes, based on which
we learn an attention mask yielding individual- and group-level explainability.
Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals
with PD, xGW-GAT identifies functional connectivity patterns associated with
gait impairment in PD and offers interpretable explanations of functional
subnetworks associated with motor impairment. Our model successfully
outperforms several existing methods while simultaneously revealing
clinically-relevant connectivity patterns. The source code is available at
https://github.com/favour-nerrise/xGW-GAT .
Related papers
- GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease [9.69595196614787]
This paper proposes GAMMA-PD, a novel heterogeneous hypergraph fusion framework for multi-modal clinical data analysis.
GAMMA-PD integrates imaging and non-imaging data into a "hypernetwork" (patient population graph) by preserving higher-order information.
We demonstrate gains in predicting motor impairment symptoms in Parkinson's disease.
arXiv Detail & Related papers (2024-10-01T15:51:33Z) - Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - Capturing functional connectomics using Riemannian partial least squares [0.0]
For neurological disorders and diseases, functional and anatomical connectomes of the human brain can be used to better inform interventions and treatment strategies.
One approach to analysing functional connectivity is using partial least squares (PLS), a multivariate regression technique designed for high-dimensional predictor data.
arXiv Detail & Related papers (2023-06-30T02:24:34Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
A novel hierarchical structural-functional connectivity fusing (HSCF) model is proposed to construct brain structural-functional connectivity matrices.
Results from a wide range of tests performed on the public Alzheimer's Disease Neuroimaging Initiative database show that the proposed model performs better than competing approaches.
arXiv Detail & Related papers (2023-06-16T05:22:25Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - Learning Multitask Gaussian Bayesian Networks [11.745963019193955]
Major depressive disorder (MDD) requires study of brain functional connectivity alterations for patients.
The amount of data collected during an fMRI scan is too limited to provide sufficient information for individual analysis.
We propose a multitask Gaussian Bayesian network framework capable for identifying individual disease-induced alterations for MDD patients.
arXiv Detail & Related papers (2022-05-11T08:38:00Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
Characterizing the subtle changes of functional brain networks associated with Alzheimer's disease (AD) is important for early diagnosis and prediction of disease progression.
We developed a new deep learning method, termed multiple graph Gaussian embedding model (MG2G)
We used MG2G to detect the intrinsic latent dimensionality of MEG brain networks, predict the progression of patients with mild cognitive impairment (MCI) to AD, and identify brain regions with network alterations related to MCI.
arXiv Detail & Related papers (2020-05-08T02:29:24Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.