論文の概要: Gait Cycle-Inspired Learning Strategy for Continuous Prediction of Knee
Joint Trajectory from sEMG
- arxiv url: http://arxiv.org/abs/2307.13209v1
- Date: Tue, 25 Jul 2023 02:23:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 18:34:08.366578
- Title: Gait Cycle-Inspired Learning Strategy for Continuous Prediction of Knee
Joint Trajectory from sEMG
- Title(参考訳): semgによる膝関節軌跡の連続予測のための歩行サイクルインスパイア学習戦略
- Authors: Xueming Fu, Hao Zheng, Luyan Liu, Wenjuan Zhong, Haowen Liu, Wenxuan
Xiong, Yuyang Zhang, Yifeng Chen, Dong Wei, Mingjie Dong, Yefeng Zheng,
Mingming Zhang
- Abstract要約: 本稿では,2つの歩行サイクルにインスパイアされた学習戦略を統合し,膝関節の軌道予測の課題を軽減するモデルを提案する。
異なるネットワークエンティティを通して学習することにより、モデルは共通の歩行特徴とパーソナライズされた歩行特徴の両方をキャプチャする。
実験結果から, 平均根平均二乗誤差(RMSE)を3.03度(0.49度), 50ms前後で予測できることが示唆された。
- 参考スコア(独自算出の注目度): 24.608475386117426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting lower limb motion intent is vital for controlling exoskeleton
robots and prosthetic limbs. Surface electromyography (sEMG) attracts
increasing attention in recent years as it enables ahead-of-time prediction of
motion intentions before actual movement. However, the estimation performance
of human joint trajectory remains a challenging problem due to the inter- and
intra-subject variations. The former is related to physiological differences
(such as height and weight) and preferred walking patterns of individuals,
while the latter is mainly caused by irregular and gait-irrelevant muscle
activity. This paper proposes a model integrating two gait cycle-inspired
learning strategies to mitigate the challenge for predicting human knee joint
trajectory. The first strategy is to decouple knee joint angles into motion
patterns and amplitudes former exhibit low variability while latter show high
variability among individuals. By learning through separate network entities,
the model manages to capture both the common and personalized gait features. In
the second, muscle principal activation masks are extracted from gait cycles in
a prolonged walk. These masks are used to filter out components unrelated to
walking from raw sEMG and provide auxiliary guidance to capture more
gait-related features. Experimental results indicate that our model could
predict knee angles with the average root mean square error (RMSE) of
3.03(0.49) degrees and 50ms ahead of time. To our knowledge this is the best
performance in relevant literatures that has been reported, with reduced RMSE
by at least 9.5%.
- Abstract(参考訳): 下肢運動の意図を予測することは、外骨格ロボットと義肢を制御するために不可欠である。
表面筋電図(sEMG)は、実際の動きよりも前向きな動きの予測を可能にするため、近年注目を集めている。
しかし,ヒト関節軌跡の推定性能は,サブジェクト間およびイントラ・イントラジェクトの変動により,依然として課題となっている。
前者は体格の違い(身長や体重など)と個人の歩行パターンを好み、後者は主に不規則で歩行に関係のない筋肉活動によって引き起こされる。
本稿では,歩行サイクルに触発された2つの学習戦略を統合し,ヒト膝関節軌跡予測の課題を軽減するモデルを提案する。
第1の戦略は、膝関節角度を運動パターンに分離し、前者は低変動を示し、後者は個人間で高い変動性を示す。
異なるネットワークエンティティを通して学習することにより、モデルは共通の歩行特徴とパーソナライズされた歩行特徴の両方をキャプチャする。
第2に、長期歩行における歩行周期から筋主活性化マスクを抽出する。
これらのマスクは、生のsEMGからの歩行と無関係な成分をフィルタリングし、歩行に関連する特徴を捉えるための補助的なガイダンスを提供する。
実験結果は, 平均根平均二乗誤差(rmse)が3.03(0.49)度, 50msで膝角度を予測できることを示した。
我々の知る限り、これはRMSEを少なくとも9.5%削減した関連文献で最高のパフォーマンスである。
関連論文リスト
- Continual Imitation Learning for Prosthetic Limbs [0.7922558880545526]
モーター付きバイオニック手足は約束を提供するが、その実用性は様々な環境での人間の運動の進化する相乗効果を模倣することに依存する。
本稿では, カメラを用いたモーションキャプチャとウェアラブルセンサデータを活用したバイオニック補綴用アプリケーションの新しいモデルを提案する。
本稿では,マルチタスク,継続的な適応,動きの予測,移動の洗練が可能なモデルを提案する。
論文 参考訳(メタデータ) (2024-05-02T09:22:54Z) - AiOS: All-in-One-Stage Expressive Human Pose and Shape Estimation [55.179287851188036]
人間のポーズと形状の復元のための新しいオールインワンステージフレームワークであるAiOSを、追加の人間検出ステップなしで導入する。
まず、画像中の人間の位置を探索し、各インスタンスのグローバルな機能をエンコードするために、人間のトークンを使用します。
そして、画像中の人間の関節を探索し、きめ細かい局所的特徴を符号化するジョイント関連トークンを導入する。
論文 参考訳(メタデータ) (2024-03-26T17:59:23Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Koopman pose predictions for temporally consistent human walking
estimations [11.016730029019522]
そこで我々は,下肢運動の非線形ダイナミクスを組み込んだクープマン理論に基づく新しい因子グラフ因子を提案する。
以上の結果から,本手法は骨格形状の外れ率を約1m削減し,自然歩行軌跡を最大10m以上保存できることが示唆された。
論文 参考訳(メタデータ) (2022-05-05T16:16:06Z) - From Motion to Muscle [0.0]
筋活動は, 位置, 速度, 加速度などの運動特徴に基づいて人工的に生成できることを示す。
このモデルは、以前に訓練された運動に対して顕著な精度を達成し、これまで訓練されていない新しい運動に対して非常に高い精度を維持している。
論文 参考訳(メタデータ) (2022-01-27T13:30:17Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
歴史的ポーズシーケンスから人間の動きを予測することは、機械が人間と知的な相互作用を成功させるために不可欠である。
本研究では,様々なポーズ表現に関する詳細な研究を行い,その動作予測課題に対する効果に着目した。
AHMR(Attentive Hierarchical Motion Recurrent Network)と呼ばれる新しいRNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-30T10:45:22Z) - A novel approach for modelling and classifying sit-to-stand kinematics
using inertial sensors [0.6243048287561809]
立ち上がり運動は、老年者やパーキンソン病などの運動障害のある患者にしばしば影響を受け、転倒する。
本稿では,2つのウェアラブル慣性センサのみを用いて,立位から立位までの運動量を推定するための3分割体モデルを提案する。
若年健常成人10名(YH)、高齢健常成人12名(OH)、パーキンソン病12名(PwP)に適用した。
論文 参考訳(メタデータ) (2021-07-14T17:31:50Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
本研究は, 関節, 身体部分, フルポーズレベルなど, 異なる種類の注意力の使用について検討した。
我々は,Human3.6M,AMASS,3DPWを用いて,周期的および非周期的両方の行動に対するアプローチの利点を検証した。
論文 参考訳(メタデータ) (2021-06-17T08:08:11Z) - Learning Control Policies for Imitating Human Gaits [2.28438857884398]
人間はウォーキング、ランニング、ジャンプといった運動を最も効率的な方法で行っており、このプロジェクトの動機の源となっている。
骨格と筋骨格の人間モデルは,矢状面の運動に対して考慮された。
モデルフリー強化学習アルゴリズムは、逆ダイナミクス制御動作の最適化に用いられた。
論文 参考訳(メタデータ) (2021-05-15T16:33:24Z) - Continuous Decoding of Daily-Life Hand Movements from Forearm Muscle
Activity for Enhanced Myoelectric Control of Hand Prostheses [78.120734120667]
本研究では,前腕のEMG活性をハンドキネマティクスに連続的にマップする,長期記憶(LSTM)ネットワークに基づく新しい手法を提案する。
私たちの研究は、この困難なデータセットを使用するハンドキネマティクスの予測に関する最初の報告です。
提案手法は, 人工手指の複数のDOFの独立的, 比例的アクティベーションのための制御信号の生成に適していることが示唆された。
論文 参考訳(メタデータ) (2021-04-29T00:11:32Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。