FedMEKT: Distillation-based Embedding Knowledge Transfer for Multimodal
Federated Learning
- URL: http://arxiv.org/abs/2307.13214v2
- Date: Tue, 7 Nov 2023 02:15:59 GMT
- Title: FedMEKT: Distillation-based Embedding Knowledge Transfer for Multimodal
Federated Learning
- Authors: Huy Q. Le, Minh N. H. Nguyen, Chu Myaet Thwal, Yu Qiao, Chaoning
Zhang, and Choong Seon Hong
- Abstract summary: Federated learning (FL) enables a decentralized machine learning paradigm for multiple clients to collaboratively train a generalized global model without sharing their private data.
Most existing works simply propose typical FL systems for single-modal data, thus limiting its potential on exploiting valuable multimodal data for future personalized applications.
We propose a novel multimodal FL framework that employs a semi-supervised learning approach to leverage the representations from different modalities.
Bringing this concept into a system, we develop a distillation-based multimodal embedding knowledge transfer mechanism, namely FedMEKT, which allows the server and clients to exchange the joint knowledge of their learning models extracted from a small multimodal
- Score: 42.84295556492631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) enables a decentralized machine learning paradigm for
multiple clients to collaboratively train a generalized global model without
sharing their private data. Most existing works simply propose typical FL
systems for single-modal data, thus limiting its potential on exploiting
valuable multimodal data for future personalized applications. Furthermore, the
majority of FL approaches still rely on the labeled data at the client side,
which is limited in real-world applications due to the inability of
self-annotation from users. In light of these limitations, we propose a novel
multimodal FL framework that employs a semi-supervised learning approach to
leverage the representations from different modalities. Bringing this concept
into a system, we develop a distillation-based multimodal embedding knowledge
transfer mechanism, namely FedMEKT, which allows the server and clients to
exchange the joint knowledge of their learning models extracted from a small
multimodal proxy dataset. Our FedMEKT iteratively updates the generalized
global encoders with the joint embedding knowledge from the participating
clients. Thereby, to address the modality discrepancy and labeled data
constraint in existing FL systems, our proposed FedMEKT comprises local
multimodal autoencoder learning, generalized multimodal autoencoder
construction, and generalized classifier learning. Through extensive
experiments on three multimodal human activity recognition datasets, we
demonstrate that FedMEKT achieves superior global encoder performance on linear
evaluation and guarantees user privacy for personal data and model parameters
while demanding less communication cost than other baselines.
Related papers
- FedEPA: Enhancing Personalization and Modality Alignment in Multimodal Federated Learning [9.531634844824596]
Federated Learning (FL) enables decentralized model training across multiple parties while preserving privacy.
Most FL systems assume clients hold only unimodal data, limiting their real-world applicability.
We propose FedEPA, a novel FL framework for multimodal learning.
arXiv Detail & Related papers (2025-04-16T12:32:37Z) - FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
We present FedMoE, the efficient personalized Federated Learning framework to address data heterogeneity.
FedMoE is composed of two fine-tuning stages. In the first stage, FedMoE simplifies the problem by conducting a search based on observed activation patterns.
In the second stage, these submodels are distributed to clients for further training and returned for server aggregating.
arXiv Detail & Related papers (2024-08-21T03:16:12Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformer is a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client.
We develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling.
Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models.
arXiv Detail & Related papers (2023-03-27T07:07:33Z) - Multimodal Federated Learning via Contrastive Representation Ensemble [17.08211358391482]
Federated learning (FL) serves as a privacy-conscious alternative to centralized machine learning.
Existing FL methods all rely on model aggregation on single modality level.
We propose Contrastive Representation Ensemble and Aggregation for Multimodal FL (CreamFL)
arXiv Detail & Related papers (2023-02-17T14:17:44Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Personalized Retrogress-Resilient Framework for Real-World Medical
Federated Learning [8.240098954377794]
We propose a personalized retrogress-resilient framework to produce a superior personalized model for each client.
Our experiments on real-world dermoscopic FL dataset prove that our personalized retrogress-resilient framework outperforms state-of-the-art FL methods.
arXiv Detail & Related papers (2021-10-01T13:24:29Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.