One for Multiple: Physics-informed Synthetic Data Boosts Generalizable
Deep Learning for Fast MRI Reconstruction
- URL: http://arxiv.org/abs/2307.13220v2
- Date: Wed, 28 Feb 2024 11:56:57 GMT
- Title: One for Multiple: Physics-informed Synthetic Data Boosts Generalizable
Deep Learning for Fast MRI Reconstruction
- Authors: Zi Wang, Xiaotong Yu, Chengyan Wang, Weibo Chen, Jiazheng Wang,
Ying-Hua Chu, Hongwei Sun, Rushuai Li, Peiyong Li, Fan Yang, Haiwei Han,
Taishan Kang, Jianzhong Lin, Chen Yang, Shufu Chang, Zhang Shi, Sha Hua, Yan
Li, Juan Hu, Liuhong Zhu, Jianjun Zhou, Meijing Lin, Jiefeng Guo, Congbo Cai,
Zhong Chen, Di Guo, Guang Yang, Xiaobo Qu
- Abstract summary: Deep Learning (DL) has proven effective for fast MRI image reconstruction, but its broader applicability has been constrained.
We present a novel Physics-Informed Synthetic data learning framework for Fast MRI, called PISF.
PISF marks a breakthrough by enabling generalized DL for multi-scenario MRI reconstruction through a single trained model.
- Score: 20.84830225817378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic resonance imaging (MRI) is a widely used radiological modality
renowned for its radiation-free, comprehensive insights into the human body,
facilitating medical diagnoses. However, the drawback of prolonged scan times
hinders its accessibility. The k-space undersampling offers a solution, yet the
resultant artifacts necessitate meticulous removal during image reconstruction.
Although Deep Learning (DL) has proven effective for fast MRI image
reconstruction, its broader applicability across various imaging scenarios has
been constrained. Challenges include the high cost and privacy restrictions
associated with acquiring large-scale, diverse training data, coupled with the
inherent difficulty of addressing mismatches between training and target data
in existing DL methodologies. Here, we present a novel Physics-Informed
Synthetic data learning framework for Fast MRI, called PISF. PISF marks a
breakthrough by enabling generalized DL for multi-scenario MRI reconstruction
through a single trained model. Our approach separates the reconstruction of a
2D image into many 1D basic problems, commencing with 1D data synthesis to
facilitate generalization. We demonstrate that training DL models on synthetic
data, coupled with enhanced learning techniques, yields in vivo MRI
reconstructions comparable to or surpassing those of models trained on matched
realistic datasets, reducing the reliance on real-world MRI data by up to 96%.
Additionally, PISF exhibits remarkable generalizability across multiple vendors
and imaging centers. Its adaptability to diverse patient populations has been
validated through evaluations by ten experienced medical professionals. PISF
presents a feasible and cost-effective way to significantly boost the
widespread adoption of DL in various fast MRI applications.
Related papers
- Training Physics-Driven Deep Learning Reconstruction without Raw Data Access for Equitable Fast MRI [2.512491726995032]
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans.
PD-DL offers higher acceleration rates compared to existing clinical fast MRI techniques, but their use has been limited outside specialized MRI centers.
One impediment for their deployment is the difficulties with generalization to pathologies or population groups that are not well-represented in training sets.
CUPID achieves similar quality compared to well-established PD-DL training strategies that require raw k-space data access.
arXiv Detail & Related papers (2024-11-20T03:53:41Z) - MRPD: Undersampled MRI reconstruction by prompting a large latent diffusion model [18.46762698682188]
We propose a novel framework for undersampled MRI Reconstruction by Prompting a large latent Diffusion model (MRPD)
For unsupervised reconstruction, MRSampler guides LLDM with a random-phase-modulated hard-to-soft control.
Experiments on FastMRI and IXI show that MRPD is the only model that supports both MRI database-free and database-available scenarios.
arXiv Detail & Related papers (2024-02-16T11:54:34Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
We propose a data refinement framework for self-supervised MR image reconstruction.
We first analyze the reason of the performance gap between self-supervised and supervised methods.
Then, we design an effective self-supervised training data refinement method to reduce this data bias.
arXiv Detail & Related papers (2022-11-24T06:57:16Z) - Physics-informed Deep Diffusion MRI Reconstruction with Synthetic Data:
Break Training Data Bottleneck in Artificial Intelligence [27.618154067389018]
Diffusion magnetic resonance imaging (MRI) is the only imaging modality for non-invasive movement detection of inmagnitude water molecules.
DWI acquired by multi-shot techniques can achieve higher resolution, better signal-to-noise ratio, and lower geometric distortion than single-shot.
These artifacts cannot be removed prospectively, leading to the absence of artifact-free training labels.
We propose a Physics-Informed Deep DWI reconstruction method (PIDD) to synthesize high-quality paired training data.
arXiv Detail & Related papers (2022-10-20T16:27:54Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Progressively Volumetrized Deep Generative Models for Data-Efficient
Contextual Learning of MR Image Recovery [0.0]
We introduce a novel progressive volumetrization strategy for generative models (ProvoGAN)
ProvoGAN serially decomposes complex volumetric image recovery tasks into successive cross-sectional mappings task-optimally ordered across individual rectilinear dimensions.
Comprehensive demonstrations on mainstream MRI reconstruction and synthesis tasks show that ProvoGAN yields superior performance to state-of-the-art volumetric and cross-sectional models.
arXiv Detail & Related papers (2020-11-27T18:55:56Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.