論文の概要: Pay Attention to What You Need
- arxiv url: http://arxiv.org/abs/2307.13365v3
- Date: Sat, 22 Feb 2025 14:00:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-25 15:50:33.523183
- Title: Pay Attention to What You Need
- Title(参考訳): 必要なものへの注意を払う
- Authors: Yifei Gao, Shaohong Chen, Lei Wang, Ruiting Dai, Ziyun Zhang, Kerui Ren, Jiaji Wu, Jun Cheng,
- Abstract要約: 大型言語モデル(LLM)は長文理解に苦しむ。
本稿では,LLMの情報解釈・検索能力を高めるために,SRA(Scaled ReAttention)と呼ばれる手法を提案する。
- 参考スコア(独自算出の注目度): 8.369701050186867
- License:
- Abstract: Although large language models (LLMs) have achieved significant success in natural language processing, they still struggle with long-context comprehension. Traditional approaches to mitigating this issue typically rely on fine-tuning or retraining, which is both resource-intensive and challenging to deploy in lightweight industrial settings. In this paper, we investigate the potential to accomplish this without any additional resources. Through an in-depth study of the attention mechanism in LLMs, we propose a method called Scaled ReAttention (SRA) to strengthen LLMs' ability to interpret and retrieve information by strategically manipulating their attention scores during inference. Through extensive experiments, we demonstrate that integrating SRA significantly boosts LLMs' performance on a variety of downstream tasks, highlighting its practical potential for enhancing language understanding without incurring the overhead of traditional training.
- Abstract(参考訳): 大規模言語モデル(LLM)は自然言語処理において大きな成功を収めているが、長文理解に苦戦している。
この問題を緩和するための従来のアプローチは、通常は微調整や再訓練に頼っている。
本稿では,新たな資源を使わずにこれを実現する可能性について検討する。
本研究では,LLMにおける注意機構の詳細な研究を通じて,LLMの理解と情報検索能力を高めるために,SRA(Scaled ReAttention)と呼ばれる手法を提案する。
広範囲な実験により,SRAの統合は様々な下流タスクにおけるLLMのパフォーマンスを著しく向上させ,従来の訓練のオーバーヘッドを伴わずに言語理解を向上させるための実践的可能性を強調した。
関連論文リスト
- Untie the Knots: An Efficient Data Augmentation Strategy for Long-Context Pre-Training in Language Models [21.90388980448712]
長いコンテキストを扱うためのトレーニングモデルには、大きな課題があります。
継続事前学習フェーズで使用される新しいデータ拡張戦略であるUntie the Knots(textbfUtK)を紹介する。
我々は、UtKがRULER上で128Kの文脈長で75%と84.5%の精度を達成したことを示す200億のトークンで訓練された7Bと72Bのパラメータを持つモデルに関する広範な実験を行った。
論文 参考訳(メタデータ) (2024-09-07T09:28:55Z) - The Curious Case of Nonverbal Abstract Reasoning with Multi-Modal Large Language Models [19.213774611556]
MLLM(Multi-modal large language model)は、言語情報と視覚情報を統合したものである。
MLLMの革新的展望にもかかわらず、推論能力に対する我々の理解は限られている。
本研究では,オープンソースおよびクローズドソースMLLMの非言語的抽象的推論能力を評価する。
論文 参考訳(メタデータ) (2024-01-22T16:57:05Z) - LLM Augmented LLMs: Expanding Capabilities through Composition [56.40953749310957]
CALM -- 言語モデルの拡張のための構成 -- は、モデル間の相互アテンションを導入して、表現を構成し、新しい機能を有効にする。
低リソース言語で訓練されたより小さなモデルでPaLM2-Sを増強すると、英語への翻訳のようなタスクで最大13%の改善が達成される。
PaLM2-Sがコード固有モデルで拡張されると、コード生成や説明タスクのベースモデルよりも40%向上する。
論文 参考訳(メタデータ) (2024-01-04T18:53:01Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
重み行列の高次成分を選択的に除去することにより,大規模言語モデルの性能を大幅に向上させることができることを示す。
LAER(Layer-Selective Rank reduction)と呼ばれるこの単純な介入は、トレーニングが完了した後、モデル上で行うことができる。
言語モデルとデータセットにまたがって、この発見の汎用性を実証する広範な実験を示す。
論文 参考訳(メタデータ) (2023-12-21T03:51:08Z) - Teaching Language Models to Self-Improve through Interactive Demonstrations [83.9421355808174]
大規模言語モデルの自己改善能力は欠如しており、より小さなモデルで学ぶことは困難である。
このような自己改善能力を持つ小型モデルのトレーニングアルゴリズムであるTriPosTを導入する。
我々は,LLaMA-7bの算数および推論タスクの性能を最大7.13%向上させることができることを示す。
論文 参考訳(メタデータ) (2023-10-20T14:11:04Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - Small Models are Valuable Plug-ins for Large Language Models [65.29370906766997]
GPT-3やGPT-4のような大きな言語モデル(LLM)は強力だが、その重み付けはしばしば一般には利用できない。
我々は,局所的に微調整された小型モデルでブラックボックスLLMを動作させることができるSuper In-Context Learning (SuperICL)を提案する。
論文 参考訳(メタデータ) (2023-05-15T17:59:01Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
提案手法は, 等価計算コストの高密度モデルに対して, 様々なベンチマークにおいて, 最先端性能を実現することができることを示す。
我々の研究は、MoEモデルのトレーニングの安定化、モデル解釈可能性に対するMoEの影響の理解、ビジョン言語モデルをスケールする際の計算性能間のトレードオフのバランスに関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2023-03-13T16:00:31Z) - Augmenting Interpretable Models with LLMs during Training [73.40079895413861]
本稿では,効率よく解釈可能なモデルを構築するための拡張解釈モデル (Aug-imodels) を提案する。
Aug-imodel は、フィッティング時に LLM を使用するが、推論中に使用せず、完全な透明性を実現する。
自然言語処理におけるAug-imodelのインスタンス化について検討する: (i) Aug-GAM, (ii) Aug-Tree, (ii) LLM機能拡張による決定木の拡大。
論文 参考訳(メタデータ) (2022-09-23T18:36:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。