Multi-GPU Approach for Training of Graph ML Models on large CFD Meshes
- URL: http://arxiv.org/abs/2307.13592v1
- Date: Tue, 25 Jul 2023 15:49:25 GMT
- Title: Multi-GPU Approach for Training of Graph ML Models on large CFD Meshes
- Authors: Sebastian Str\"onisch, Maximilian Sander, Andreas Kn\"upfer, Marcus
Meyer
- Abstract summary: Mesh-based numerical solvers are an important part in many design tool chains.
Machine Learning based surrogate models are fast in predicting approximate solutions but often lack accuracy.
This paper scales a state-of-the-art surrogate model from the domain of graph-based machine learning to industry-relevant mesh sizes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mesh-based numerical solvers are an important part in many design tool
chains. However, accurate simulations like computational fluid dynamics are
time and resource consuming which is why surrogate models are employed to
speed-up the solution process. Machine Learning based surrogate models on the
other hand are fast in predicting approximate solutions but often lack
accuracy. Thus, the development of the predictor in a predictor-corrector
approach is the focus here, where the surrogate model predicts a flow field and
the numerical solver corrects it. This paper scales a state-of-the-art
surrogate model from the domain of graph-based machine learning to
industry-relevant mesh sizes of a numerical flow simulation. The approach
partitions and distributes the flow domain to multiple GPUs and provides halo
exchange between these partitions during training. The utilized graph neural
network operates directly on the numerical mesh and is able to preserve complex
geometries as well as all other properties of the mesh. The proposed surrogate
model is evaluated with an application on a three dimensional turbomachinery
setup and compared to a traditionally trained distributed model. The results
show that the traditional approach produces superior predictions and
outperforms the proposed surrogate model. Possible explanations, improvements
and future directions are outlined.
Related papers
- Iterative Sizing Field Prediction for Adaptive Mesh Generation From Expert Demonstrations [49.173541207550485]
Adaptive Meshing By Expert Reconstruction (AMBER) is an imitation learning problem.
AMBER combines a graph neural network with an online data acquisition scheme to predict the projected sizing field of an expert mesh.
We experimentally validate AMBER on 2D meshes and 3D meshes provided by a human expert, closely matching the provided demonstrations and outperforming a single-step CNN baseline.
arXiv Detail & Related papers (2024-06-20T10:01:22Z) - Conformal Predictions Enhanced Expert-guided Meshing with Graph Neural
Networks [8.736819316856748]
This paper presents a machine learning-based scheme that utilize Graph Neural Networks (GNN) and expert guidance to automatically generate CFD meshes for aircraft models.
We introduce a new 3D segmentation algorithm that outperforms two state-of-the-art models, PointNet++ and PointMLP, for surface classification.
We also present a novel approach to project predictions from 3D mesh segmentation models to CAD surfaces using the conformal predictions method.
arXiv Detail & Related papers (2023-08-14T14:39:13Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Evaluation of Differentially Constrained Motion Models for Graph-Based
Trajectory Prediction [1.1947990549568765]
This research investigates the performance of various motion models in combination with numerical solvers for the prediction task.
The study shows that simpler models, such as low-order integrator models, are preferred over more complex, e.g., kinematic models, to achieve accurate predictions.
arXiv Detail & Related papers (2023-04-11T10:15:20Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
Multi-fidelity modelling enables accurate inference even when only a small set of accurate data is available.
By combining the realizations of the high-fidelity model with one or more low-fidelity models, the multi-fidelity method can make accurate predictions of quantities of interest.
This paper proposes a new dimension reduction framework based on rotated multi-fidelity Gaussian process regression and a Bayesian active learning scheme.
arXiv Detail & Related papers (2022-04-11T01:20:35Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Surrogate Modelling for Injection Molding Processes using Machine
Learning [0.23090185577016442]
Injection molding is one of the most popular manufacturing methods for the modeling of complex plastic objects.
We propose a baseline for a data processing pipeline that includes the extraction of data from Moldflow simulation projects.
We evaluate machine learning models for fill time and deflection distribution prediction and provide baseline values of MSE and RMSE metrics.
arXiv Detail & Related papers (2021-07-30T12:13:52Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
We present a combination of accurate numerical simulations of arbitrary, flat, and non-flat channels and machine learning models predicting drag coefficient and Stanton number.
We show that convolutional neural networks (CNN) can accurately predict the target properties at a fraction of the time of numerical simulations.
arXiv Detail & Related papers (2021-01-19T16:14:02Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.