Surrogate Modelling for Injection Molding Processes using Machine
Learning
- URL: http://arxiv.org/abs/2107.14574v1
- Date: Fri, 30 Jul 2021 12:13:52 GMT
- Title: Surrogate Modelling for Injection Molding Processes using Machine
Learning
- Authors: Arsenii Uglov, Sergei Nikolaev, Sergei Belov, Daniil Padalitsa,
Tatiana Greenkina, Marco San Biagio, Fabio Cacciatori
- Abstract summary: Injection molding is one of the most popular manufacturing methods for the modeling of complex plastic objects.
We propose a baseline for a data processing pipeline that includes the extraction of data from Moldflow simulation projects.
We evaluate machine learning models for fill time and deflection distribution prediction and provide baseline values of MSE and RMSE metrics.
- Score: 0.23090185577016442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Injection molding is one of the most popular manufacturing methods for the
modeling of complex plastic objects. Faster numerical simulation of the
technological process would allow for faster and cheaper design cycles of new
products. In this work, we propose a baseline for a data processing pipeline
that includes the extraction of data from Moldflow simulation projects and the
prediction of the fill time and deflection distributions over 3-dimensional
surfaces using machine learning models. We propose algorithms for engineering
of features, including information of injector gates parameters that will
mostly affect the time for plastic to reach the particular point of the form
for fill time prediction, and geometrical features for deflection prediction.
We propose and evaluate baseline machine learning models for fill time and
deflection distribution prediction and provide baseline values of MSE and RMSE
metrics. Finally, we measure the execution time of our solution and show that
it significantly exceeds the time of simulation with Moldflow software:
approximately 17 times and 14 times faster for mean and median total times
respectively, comparing the times of all analysis stages for deflection
prediction. Our solution has been implemented in a prototype web application
that was approved by the management board of Fiat Chrysler Automobiles and
Illogic SRL. As one of the promising applications of this surrogate modelling
approach, we envision the use of trained models as a fast objective function in
the task of optimization of technological parameters of the injection molding
process (meaning optimal placement of gates), which could significantly aid
engineers in this task, or even automate it.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge [0.0]
We propose a hybrid modeling workflow for process-based hydrologic models and machine learning surrogate models.
As a case study, we apply this workflow to simulations of variably saturated groundwater flow at a prospective managed aquifer recharge site.
Our results demonstrate that ML surrogate models can achieve under 10% mean absolute percentage error and yield order-of-magnitude runtime savings.
arXiv Detail & Related papers (2024-07-30T15:24:27Z) - Predictive Maintenance Model Based on Anomaly Detection in Induction
Motors: A Machine Learning Approach Using Real-Time IoT Data [0.0]
In this work, we demonstrate a novel anomaly detection system on induction motors used in pumps, compressors, fans, and other industrial machines.
We use a combination of pre-processing techniques and machine learning (ML) models with a low computational cost.
arXiv Detail & Related papers (2023-10-15T18:43:45Z) - Multi-GPU Approach for Training of Graph ML Models on large CFD Meshes [0.0]
Mesh-based numerical solvers are an important part in many design tool chains.
Machine Learning based surrogate models are fast in predicting approximate solutions but often lack accuracy.
This paper scales a state-of-the-art surrogate model from the domain of graph-based machine learning to industry-relevant mesh sizes.
arXiv Detail & Related papers (2023-07-25T15:49:25Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
We investigate the network traffic data generated from a laser cutting machine deployed in a Trumpf factory in Germany.
We analyze the traffic statistics, capture the dependencies between the internal states of the machine, and model the network traffic as a production state dependent process.
We compare the performance of various generative models including variational autoencoder (VAE), conditional variational autoencoder (CVAE), and generative adversarial network (GAN)
arXiv Detail & Related papers (2022-11-11T09:46:58Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - TunaOil: A Tuning Algorithm Strategy for Reservoir Simulation Workloads [0.9940728137241215]
TunaOil is a new methodology to enhance the search for optimal numerical parameters of reservoir flow simulations.
We leverage ensembles of models in different oracles to extract information from each simulation and optimize the numerical parameters in their subsequent runs.
Our experiments show that the predictions can improve the overall workload on average by 31%.
arXiv Detail & Related papers (2022-08-04T12:11:13Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Real-time Forecast Models for TBM Load Parameters Based on Machine
Learning Methods [6.247628933072029]
In this paper, based on in-situ TBM operational data, we use the machine-learning (ML) methods to build the real-time forecast models for TBM load parameters.
To decrease the model complexity and improve the generalization, we also apply the least absolute shrinkage and selection (Lasso) method to extract the essential features of the forecast task.
arXiv Detail & Related papers (2021-04-12T07:31:39Z) - Learning to predict metal deformations in hot-rolling processes [59.00006390882099]
Hot-rolling is a metal forming process that produces a cross-section from an input through a sequence of deformations.
In current practice, the rolling sequence and the geometry of their rolls are needed to achieve a given cross-section.
We propose a supervised learning approach to predict a given by a set of rolls with given geometry.
arXiv Detail & Related papers (2020-07-22T13:33:44Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
It is necessary to expose to the process engineer, not solely the model predictions, but also their interpretability.
Model-agnostic local interpretability solutions based on LIME have recently emerged to improve the original method.
We present in this paper a novel approach, VAE-LIME, for local interpretability of data-driven models forecasting the temperature of the hot metal produced by a blast furnace.
arXiv Detail & Related papers (2020-07-15T07:07:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.