Geometric quantum complexity of bosonic oscillator systems
- URL: http://arxiv.org/abs/2307.13736v2
- Date: Thu, 18 Apr 2024 12:59:22 GMT
- Title: Geometric quantum complexity of bosonic oscillator systems
- Authors: Satyaki Chowdhury, Martin Bojowald, Jakub Mielczarek,
- Abstract summary: The length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation.
New insights about complexity can be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to the pioneering work of Nielsen and collaborators, the length of the minimal geodesic in a geometric realization of a suitable operator space provides a measure of the quantum complexity of an operation. Compared with the original concept of complexity based on the minimal number of gates required to construct the desired operation as a product, this geometrical approach amounts to a more concrete and computable definition, but its evaluation is nontrivial in systems with a high-dimensional Hilbert space. The geometrical formulation can more easily be evaluated by considering the geometry associated with a suitable finite-dimensional group generated by a small number of relevant operators of the system. In this way, the method has been applied in particular to the harmonic oscillator, which is also of interest in the present paper. However, subtle and previously unrecognized issues of group theory can lead to unforeseen complications, motivating a new formulation that remains on the level of the underlying Lie algebras for most of the required steps. Novel insights about complexity can thereby be found in a low-dimensional setting, with the potential of systematic extensions to higher dimensions as well as interactions. Specific examples include the quantum complexity of various target unitary operators associated with a harmonic oscillator, inverted harmonic oscillator, and coupled harmonic oscillators. The generality of this approach is demonstrated by an application to an anharmonic oscillator with a cubic term.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Upper bounds on quantum complexity of time-dependent oscillators [0.0]
An explicit formula for an upper bound on the quantum complexity of a harmonic oscillator Hamiltonian with time-dependent frequency is derived.
This result aligns with the gate complexity and earlier studies of de Sitter complexity.
It provides a proof of concept for the application of Nielsen complexity in cosmology, together with a systematic setting in which higher-order terms can be included.
arXiv Detail & Related papers (2024-07-01T18:00:03Z) - The Complexity of Being Entangled [0.0]
Nielsen's approach to quantum state complexity relates the minimal number of quantum gates required to prepare a state to the length of geodesics computed with a certain norm on the manifold of unitary transformations.
For a bipartite system, we investigate binding complexity, which corresponds to norms in which gates acting on a single subsystem are free of cost.
arXiv Detail & Related papers (2023-11-07T19:00:02Z) - Dynamical-Corrected Nonadiabatic Geometric Quantum Computation [9.941657239723108]
We present an effective geometric scheme combined with a general dynamical-corrected technique.
Our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-02-08T16:18:09Z) - Bounds on quantum evolution complexity via lattice cryptography [0.0]
We address the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators.
Complexity is understood here as the shortest geodesic distance between the time-dependent evolution operator and the origin within the group of unitaries.
arXiv Detail & Related papers (2022-02-28T16:20:10Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Solution to the Quantum Symmetric Simple Exclusion Process : the
Continuous Case [0.0]
We present a solution for the invariant probability measure of the one dimensional Q-SSEP in the infinite size limit.
We incidentally point out a possible interpretation of the Q-SSEP correlation functions via a surprising conneatorics and the associahedron polytopes.
arXiv Detail & Related papers (2020-06-22T13:20:40Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.