ClusterSeq: Enhancing Sequential Recommender Systems with Clustering
based Meta-Learning
- URL: http://arxiv.org/abs/2307.13766v1
- Date: Tue, 25 Jul 2023 18:53:24 GMT
- Title: ClusterSeq: Enhancing Sequential Recommender Systems with Clustering
based Meta-Learning
- Authors: Mohammmadmahdi Maheri, Reza Abdollahzadeh, Bardia Mohammadi, Mina
Rafiei, Jafar Habibi, Hamid R. Rabiee
- Abstract summary: ClusterSeq is a Meta-Learning Clustering-Based Sequential Recommender System.
It exploits dynamic information in the user sequence to enhance item prediction accuracy, even in the absence of side information.
Our proposed approach achieves a substantial improvement of 16-39% in Mean Reciprocal Rank (MRR)
- Score: 3.168790535780547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In practical scenarios, the effectiveness of sequential recommendation
systems is hindered by the user cold-start problem, which arises due to limited
interactions for accurately determining user preferences. Previous studies have
attempted to address this issue by combining meta-learning with user and
item-side information. However, these approaches face inherent challenges in
modeling user preference dynamics, particularly for "minor users" who exhibit
distinct preferences compared to more common or "major users." To overcome
these limitations, we present a novel approach called ClusterSeq, a
Meta-Learning Clustering-Based Sequential Recommender System. ClusterSeq
leverages dynamic information in the user sequence to enhance item prediction
accuracy, even in the absence of side information. This model preserves the
preferences of minor users without being overshadowed by major users, and it
capitalizes on the collective knowledge of users within the same cluster.
Extensive experiments conducted on various benchmark datasets validate the
effectiveness of ClusterSeq. Empirical results consistently demonstrate that
ClusterSeq outperforms several state-of-the-art meta-learning recommenders.
Notably, compared to existing meta-learning methods, our proposed approach
achieves a substantial improvement of 16-39% in Mean Reciprocal Rank (MRR).
Related papers
- ECORS: An Ensembled Clustering Approach to Eradicate The Local And Global Outlier In Collaborative Filtering Recommender System [0.0]
outlier detection is a key research area in recommender systems.
We propose an approach that addresses these challenges by employing various clustering algorithms.
Our experimental results demonstrate that this approach significantly improves the accuracy of outlier detection in recommender systems.
arXiv Detail & Related papers (2024-10-01T05:06:07Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
Industrial recommender systems are sensitive to the patterns of user-item engagement.
We propose a novel approach that efficiently constructs user interest and facilitates low computational cost inference.
Our approach has been deployed in multiple products at Meta, facilitating short-form video related recommendation.
arXiv Detail & Related papers (2024-08-07T16:35:10Z) - Expert with Clustering: Hierarchical Online Preference Learning Framework [4.05836962263239]
Expert with Clustering (EWC) is a hierarchical contextual bandit framework that integrates clustering techniques and prediction with expert advice.
EWC can substantially reduce regret by 27.57% compared to the LinUCB baseline.
arXiv Detail & Related papers (2024-01-26T18:44:49Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Learning to Learn a Cold-start Sequential Recommender [70.5692886883067]
The cold-start recommendation is an urgent problem in contemporary online applications.
We propose a meta-learning based cold-start sequential recommendation framework called metaCSR.
metaCSR holds the ability to learn the common patterns from regular users' behaviors.
arXiv Detail & Related papers (2021-10-18T08:11:24Z) - Hyper Meta-Path Contrastive Learning for Multi-Behavior Recommendation [61.114580368455236]
User purchasing prediction with multi-behavior information remains a challenging problem for current recommendation systems.
We propose the concept of hyper meta-path to construct hyper meta-paths or hyper meta-graphs to explicitly illustrate the dependencies among different behaviors of a user.
Thanks to the recent success of graph contrastive learning, we leverage it to learn embeddings of user behavior patterns adaptively instead of assigning a fixed scheme to understand the dependencies among different behaviors.
arXiv Detail & Related papers (2021-09-07T04:28:09Z) - Improved Representation Learning for Session-based Recommendation [0.0]
Session-based recommendation systems suggest relevant items to users by modeling user behavior and preferences using short-term anonymous sessions.
Existing methods leverage Graph Neural Networks (GNNs) that propagate and aggregate information from neighboring nodes.
We propose using a Transformer in combination with a target attentive GNN, which allows richer Representation Learning.
arXiv Detail & Related papers (2021-07-04T00:57:28Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.