ICPE: An Item Cluster-Wise Pareto-Efficient Framework for Recommendation Debiasing
- URL: http://arxiv.org/abs/2109.12887v5
- Date: Sat, 01 Mar 2025 22:46:43 GMT
- Title: ICPE: An Item Cluster-Wise Pareto-Efficient Framework for Recommendation Debiasing
- Authors: Yule Wang, Xin Xin, Yue Ding, Yunzhe Li, Dong Wang,
- Abstract summary: In this work, we explore the central theme of recommendation debiasing from an item cluster-wise multi-objective optimization perspective.<n>Aiming to balance the learning on various item clusters that differ in popularity during the training process, we propose a model-agnostic framework namely Item Cluster-Wise.<n>In detail, we define our item cluster-wise optimization target as the recommender model should balance all item clusters that differ in popularity.
- Score: 7.100121083949393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender system based on historical user-item interactions is of vital importance for web-based services. However, the observed data used to train the recommender model suffers from severe bias issues. Practically, the item frequency distribution of the dataset is a highly skewed power-law distribution. Interactions of a small fraction of head items account for almost the whole training data. The normal training paradigm from such biased data tends to repetitively generate recommendations from the head items, which further exacerbates the biases and affects the exploration of potentially interesting items from the niche set. In this work, we innovatively explore the central theme of recommendation debiasing from an item cluster-wise multi-objective optimization perspective. Aiming to balance the learning on various item clusters that differ in popularity during the training process, we propose a model-agnostic framework namely Item Cluster-Wise Pareto-Efficient Recommendation (ICPE). In detail, we define our item cluster-wise optimization target as the recommender model should balance all item clusters that differ in popularity, thus we set the model learning on each item cluster as a unique optimization objective. To achieve this goal, we first explore items' popularity levels from a novel causal reasoning perspective. Then, we devise popularity discrepancy-based bisecting clustering to separate the item clusters. Next, we adaptively find the overall harmonious gradient direction for cluster-wise optimization objectives from a Pareto-efficient solver. Finally, in the prediction stage, we perform counterfactual inference to further eliminate the impact of global propensity. Extensive experimental results verify the superiorities of ICPE on overall recommendation performance and biases elimination.
Related papers
- Variational Bayesian Personalized Ranking [39.24591060825056]
Variational BPR is a novel and easily implementable learning objective that integrates likelihood optimization, noise reduction, and popularity debiasing.
We introduce an attention-based latent interest prototype contrastive mechanism, replacing instance-level contrastive learning, to effectively reduce noise from problematic samples.
Empirically, we demonstrate the effectiveness of Variational BPR on popular backbone recommendation models.
arXiv Detail & Related papers (2025-03-14T04:22:01Z) - ComPO: Community Preferences for Language Model Personalization [122.54846260663922]
ComPO is a method to personalize preference optimization in language models.
We collect and release ComPRed, a question answering dataset with community-level preferences from Reddit.
arXiv Detail & Related papers (2024-10-21T14:02:40Z) - Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Ordinal Preference Optimization: Aligning Human Preferences via NDCG [28.745322441961438]
We develop an end-to-end preference optimization algorithm by approxing NDCG with a differentiable surrogate loss.
OPO outperforms existing pairwise and listwise approaches on evaluation sets and general benchmarks like AlpacaEval.
arXiv Detail & Related papers (2024-10-06T03:49:28Z) - Beyond Similarity: Personalized Federated Recommendation with Composite Aggregation [22.359428566363945]
Federated recommendation aims to collect global knowledge by aggregating local models from massive devices.
Current methods mainly leverage aggregation functions invented by federated vision community to aggregate parameters from similar clients.
We propose a personalized Federated recommendation model with Composite Aggregation (FedCA)
arXiv Detail & Related papers (2024-06-06T10:17:52Z) - MaxMin-RLHF: Alignment with Diverse Human Preferences [101.57443597426374]
Reinforcement Learning from Human Feedback (RLHF) aligns language models to human preferences by employing a singular reward model derived from preference data.
We learn a mixture of preference distributions via an expectation-maximization algorithm to better represent diverse human preferences.
Our algorithm achieves an average improvement of more than 16% in win-rates over conventional RLHF algorithms.
arXiv Detail & Related papers (2024-02-14T03:56:27Z) - End-to-end Learnable Clustering for Intent Learning in Recommendation [54.157784572994316]
We propose a novel intent learning method termed underlineELCRec.
It unifies behavior representation learning into an underlineEnd-to-end underlineLearnable underlineClustering framework.
We deploy this method on the industrial recommendation system with 130 million page views and achieve promising results.
arXiv Detail & Related papers (2024-01-11T15:22:55Z) - ClusterSeq: Enhancing Sequential Recommender Systems with Clustering
based Meta-Learning [3.168790535780547]
ClusterSeq is a Meta-Learning Clustering-Based Sequential Recommender System.
It exploits dynamic information in the user sequence to enhance item prediction accuracy, even in the absence of side information.
Our proposed approach achieves a substantial improvement of 16-39% in Mean Reciprocal Rank (MRR)
arXiv Detail & Related papers (2023-07-25T18:53:24Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
We develop a new learning paradigm named Cross Pairwise Ranking (CPR)
CPR achieves unbiased recommendation without knowing the exposure mechanism.
We prove in theory that this way offsets the influence of user/item propensity on the learning.
arXiv Detail & Related papers (2022-04-26T09:20:27Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - CRACT: Cascaded Regression-Align-Classification for Robust Visual
Tracking [97.84109669027225]
We introduce an improved proposal refinement module, Cascaded Regression-Align- Classification (CRAC)
CRAC yields new state-of-the-art performances on many benchmarks.
In experiments on seven benchmarks including OTB-2015, UAV123, NfS, VOT-2018, TrackingNet, GOT-10k and LaSOT, our CRACT exhibits very promising results in comparison with state-of-the-art competitors.
arXiv Detail & Related papers (2020-11-25T02:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.