Learning-based Control for PMSM Using Distributed Gaussian Processes
with Optimal Aggregation Strategy
- URL: http://arxiv.org/abs/2307.13945v1
- Date: Wed, 26 Jul 2023 03:56:24 GMT
- Title: Learning-based Control for PMSM Using Distributed Gaussian Processes
with Optimal Aggregation Strategy
- Authors: Zhenxiao Yin, Xiaobing Dai, Zewen Yang, Yang Shen, Georges Hattab,
Hang Zhao
- Abstract summary: Machine learning techniques are widely employed to infer the unknown part of the system.
For practical implementation, distributed GPR is adopted to alleviate the high computational complexity.
A control-aware optimal aggregation strategy of distributed GPR for PMSMs is proposed based on the Lyapunov stability theory.
- Score: 16.7267979284111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for accurate control in varying and unknown environments
has sparked a corresponding increase in the requirements for power supply
components, including permanent magnet synchronous motors (PMSMs). To infer the
unknown part of the system, machine learning techniques are widely employed,
especially Gaussian process regression (GPR) due to its flexibility of
continuous system modeling and its guaranteed performance. For practical
implementation, distributed GPR is adopted to alleviate the high computational
complexity. However, the study of distributed GPR from a control perspective
remains an open problem. In this paper, a control-aware optimal aggregation
strategy of distributed GPR for PMSMs is proposed based on the Lyapunov
stability theory. This strategy exclusively leverages the posterior mean,
thereby obviating the need for computationally intensive calculations
associated with posterior variance in alternative approaches. Moreover, the
straightforward calculation process of our proposed strategy lends itself to
seamless implementation in high-frequency PMSM control. The effectiveness of
the proposed strategy is demonstrated in the simulations.
Related papers
- Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
This study conducts a comparative analysis of Model Predictive Control (MPC) and Proximal Policy Optimization (PPO), a Deep Reinforcement Learning (DRL) algorithm, applied to a Quanser Aero 2 system.
PPO excels in rise-time and adaptability, making it a promising approach for applications requiring rapid response and adaptability.
arXiv Detail & Related papers (2024-08-28T08:35:34Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Decentralized Event-Triggered Online Learning for Safe Consensus of
Multi-Agent Systems with Gaussian Process Regression [3.405252606286664]
This paper presents a novel learning-based distributed control law, augmented by an auxiliary dynamics.
For continuous enhancement in predictive performance, a data-efficient online learning strategy with a decentralized event-triggered mechanism is proposed.
To demonstrate the efficacy of the proposed learning-based controller, a comparative analysis is conducted, contrasting it with both conventional distributed control laws and offline learning methodologies.
arXiv Detail & Related papers (2024-02-05T16:41:17Z) - Deployable Reinforcement Learning with Variable Control Rate [14.838483990647697]
We propose a variant of Reinforcement Learning (RL) with variable control rate.
In this approach, the policy decides the action the agent should take as well as the duration of the time step associated with that action.
We show the efficacy of SEAC through a proof-of-concept simulation driving an agent with Newtonian kinematics.
arXiv Detail & Related papers (2024-01-17T15:40:11Z) - Non-stationary Reinforcement Learning under General Function
Approximation [60.430936031067006]
We first propose a new complexity metric called dynamic Bellman Eluder (DBE) dimension for non-stationary MDPs.
Based on the proposed complexity metric, we propose a novel confidence-set based model-free algorithm called SW-OPEA.
We show that SW-OPEA is provably efficient as long as the variation budget is not significantly large.
arXiv Detail & Related papers (2023-06-01T16:19:37Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Optimization of the Model Predictive Control Meta-Parameters Through
Reinforcement Learning [1.4069478981641936]
We propose a novel framework in which any parameter of the control algorithm can be jointly tuned using reinforcement learning(RL)
We demonstrate our framework on the inverted pendulum control task, reducing the total time of the control system by 36% while also improving the control performance by 18.4% over the best-performing MPC baseline.
arXiv Detail & Related papers (2021-11-07T18:33:22Z) - Generative Actor-Critic: An Off-policy Algorithm Using the Push-forward
Model [24.030426634281643]
In continuous control tasks, widely used policies with Gaussian distributions results in ineffective exploration of environments.
We propose a density-free off-policy algorithm, Generative Actor-Critic, using the push-forward model to increase the expressiveness of policies.
We show that push-forward policies possess desirable features, such as multi-modality, which can improve the efficiency of exploration and performance of algorithms obviously.
arXiv Detail & Related papers (2021-05-08T16:29:20Z) - Reinforcement Learning for Adaptive Mesh Refinement [63.7867809197671]
We propose a novel formulation of AMR as a Markov decision process and apply deep reinforcement learning to train refinement policies directly from simulation.
The model sizes of these policy architectures are independent of the mesh size and hence scale to arbitrarily large and complex simulations.
arXiv Detail & Related papers (2021-03-01T22:55:48Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.