論文の概要: Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation
- arxiv url: http://arxiv.org/abs/2307.14068v1
- Date: Wed, 26 Jul 2023 09:40:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 12:49:40.668880
- Title: Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation
- Title(参考訳): アクティブマルチドメイン適応のための動的ドメイン不一致調整
- Authors: Long Liu, Bo Zhou, Zhipeng Zhao, Zening Liu
- Abstract要約: マルチソースアン教師付きドメイン適応(MUDA)は、関連するソースドメインから未ラベルのターゲットドメインに知識を転送することを目的としている。
アクティブマルチドメイン適応(D3AAMDA)のための動的ドメイン不一致適応法(Dynamic Domain Disrepancy Adjustment)を提案する。
このメカニズムは、ソースドメインとターゲットドメイン間の特徴のアライメントレベルを制御し、ソースドメイン内のローカルな有利な特徴情報を効果的に活用する。
- 参考スコア(独自算出の注目度): 3.367755441623275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge
from related source domains to an unlabeled target domain. While recent MUDA
methods have shown promising results, most focus on aligning the overall
feature distributions across source domains, which can lead to negative effects
due to redundant features within each domain. Moreover, there is a significant
performance gap between MUDA and supervised methods. To address these
challenges, we propose a novel approach called Dynamic Domain Discrepancy
Adjustment for Active Multi-Domain Adaptation (D3AAMDA). Firstly, we establish
a multi-source dynamic modulation mechanism during the training process based
on the degree of distribution differences between source and target domains.
This mechanism controls the alignment level of features between each source
domain and the target domain, effectively leveraging the local advantageous
feature information within the source domains. Additionally, we propose a
Multi-source Active Boundary Sample Selection (MABS) strategy, which utilizes a
guided dynamic boundary loss to design an efficient query function for
selecting important samples. This strategy achieves improved generalization to
the target domain with minimal sampling costs. We extensively evaluate our
proposed method on commonly used domain adaptation datasets, comparing it
against existing UDA and ADA methods. The experimental results unequivocally
demonstrate the superiority of our approach.
- Abstract(参考訳): multi-source unsupervised domain adaptation (muda) は、関連するソースドメインからラベルなしのターゲットドメインに知識を転送することを目的としている。
最近のMUDAメソッドは有望な結果を示しているが、ほとんどの場合、ソースドメイン全体の機能分布を調整することに重点を置いている。
さらに、MUDAと教師付き手法の間には大きな性能差がある。
これらの課題に対処するため,我々は動的ドメイン離散性適応(Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation, D3AAMDA)と呼ばれる新しいアプローチを提案する。
まず、ソースとターゲットドメイン間の分布差の度合いに基づいて、トレーニングプロセス中にマルチソースの動的変調機構を確立する。
このメカニズムは、ソースドメインとターゲットドメイン間の特徴のアライメントレベルを制御し、ソースドメイン内のローカルな有利な特徴情報を効果的に活用する。
さらに、ガイド付き動的境界損失を利用して重要なサンプルを選択するための効率的なクエリ関数を設計するマルチソースアクティブ境界サンプル選択(MABS)戦略を提案する。
この戦略は、最小サンプリングコストでターゲットドメインへの一般化を改善する。
提案手法を,既存のUDA法とADA法と比較し,広く活用されているドメイン適応データセットについて検討した。
実験結果は,我々のアプローチの優位性を明白に示している。
関連論文リスト
- Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA)は、アノテートするターゲットデータの限られた数を選択することで、新しいターゲットドメインにおけるモデル適応を最大限に向上することを目的としている。
この設定は、複数のソースからトレーニングデータを収集するより実践的なシナリオを無視します。
これは、ADAを単一のソースドメインから複数のソースドメインに拡張する、新しい、挑戦的な知識転送の設定を目標にしています。
論文 参考訳(メタデータ) (2023-11-21T13:12:21Z) - Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for
Multi-Source Domain Adaptation [2.734665397040629]
マルチソースUnsupervised Domain Adaptationはラベル付きデータを持つ複数のソースドメインからラベル付きターゲットドメインに知識を転送する。
異なるドメインとターゲットドメイン内のノイズの多い擬似ラベル間の分散の相違は、どちらもパフォーマンスのボトルネックにつながる。
本稿では,意識駆動型ドメイン融合(ADNT)と雑音耐性学習(ADNT)を統合し,上記の2つの問題に対処するアプローチを提案する。
論文 参考訳(メタデータ) (2022-08-05T01:08:41Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
ドメインの一般化は、モデルを目に見えないターゲットのドメインに安全に転送することを目的としています。
AdaODMは、異なるターゲットドメインに対するテスト時にソースモデルを適応的に修正する。
その結果,AdaODMは未確認領域の一般化能力を安定的に向上することがわかった。
論文 参考訳(メタデータ) (2022-08-03T11:51:11Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
マルチソースアン教師付きドメイン適応(MSDA)は、ソースモデルの袋から弱い知識を割り当てることで、ラベルのないドメインの予測子を学習することを目的としている。
我々は,DomaIn Alignment Layers (MS-DIAL) のマルチソースバージョンを予測器の異なるレベルに埋め込むことを提案する。
我々の手法は最先端のMSDA法を改善することができ、分類精度の相対利得は+30.64%に達する。
論文 参考訳(メタデータ) (2021-09-06T18:41:19Z) - Domain Consistency Regularization for Unsupervised Multi-source Domain
Adaptive Classification [57.92800886719651]
近年,深層学習に基づくマルチソース非教師付きドメイン適応(MUDA)が活発に研究されている。
MUDAのドメインシフトは、ソースドメインとターゲットドメインの間だけでなく、複数のソースドメインの間にも存在します。
本稿では、教師なしマルチソースドメイン適応分類において、ドメインの一貫性規則化を利用するエンドツーエンドのトレーニング可能なネットワークを提案する。
論文 参考訳(メタデータ) (2021-06-16T07:29:27Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
ドメイン一般化(Domain Generalization, DG)は、複数のソースドメインでトレーニングされた機械学習モデルが、統計の異なるターゲットドメインでうまく一般化できないという、ドメインシフトの問題を扱う。
シフト対象領域の一般化を保証するのに失敗するソースドメイン全体にわたるドメイン不変表現を学習することにより、ドメイン一般化の問題を解決するために、複数のアプローチが提案されている。
本稿では,GNNDM(Generative Nearest Neighbor Based Discrepancy Minimization)法を提案する。
論文 参考訳(メタデータ) (2020-07-28T14:54:25Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Mutual Learning Network for Multi-Source Domain Adaptation [73.25974539191553]
ML-MSDA(Multial Learning Network for Multiple Source Domain Adaptation)を提案する。
相互学習の枠組みのもと,提案手法は対象ドメインと各ソースドメインをペアリングし,条件付き対向ドメイン適応ネットワークを分岐ネットワークとして訓練する。
提案手法は, 比較手法より優れ, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-03-29T04:31:43Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
ドメイン適応は、あるラベル付きソースドメインと、わずかにラベル付けまたはラベル付けされていないターゲットドメインの間のドメインシフトをブリッジするために、転送可能なモデルを学ぶことを目的としています。
近年のマルチソース領域適応法(MDA)では,ソースとターゲット間の画素レベルのアライメントは考慮されていない。
これらの課題に対処するための新しいMDAフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T21:22:00Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
本研究では,NLPタスクのコンテキストにおいて,サンプル推定に基づく領域間の相違を特徴付ける様々な距離ベース尺度について検討する。
タスクの損失関数と協調して最小化するために,これらの距離測度を付加的な損失関数として用いるディスタンスネットモデルを開発した。
マルチアーム・バンド・コントローラを用いて複数のソース・ドメインを動的に切り替えるDistanceNet-Banditモデルに拡張する。
論文 参考訳(メタデータ) (2020-01-13T15:53:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。