論文の概要: A New Perspective on Evaluation Methods for Explainable Artificial
Intelligence (XAI)
- arxiv url: http://arxiv.org/abs/2307.14246v1
- Date: Wed, 26 Jul 2023 15:15:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-27 11:59:04.640292
- Title: A New Perspective on Evaluation Methods for Explainable Artificial
Intelligence (XAI)
- Title(参考訳): 説明可能な人工知能(XAI)の評価手法の新しい展望
- Authors: Timo Speith, Markus Langer
- Abstract要約: 我々は、リソースの可用性、ドメインの特徴、リスクの考慮を組み込んだ、曖昧な方法でアプローチするのが最善である、と論じる。
この研究は、AIのための要求工学の分野を前進させることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Within the field of Requirements Engineering (RE), the increasing
significance of Explainable Artificial Intelligence (XAI) in aligning
AI-supported systems with user needs, societal expectations, and regulatory
standards has garnered recognition. In general, explainability has emerged as
an important non-functional requirement that impacts system quality. However,
the supposed trade-off between explainability and performance challenges the
presumed positive influence of explainability. If meeting the requirement of
explainability entails a reduction in system performance, then careful
consideration must be given to which of these quality aspects takes precedence
and how to compromise between them. In this paper, we critically examine the
alleged trade-off. We argue that it is best approached in a nuanced way that
incorporates resource availability, domain characteristics, and considerations
of risk. By providing a foundation for future research and best practices, this
work aims to advance the field of RE for AI.
- Abstract(参考訳): 要求工学(RE)の分野では、AIをサポートするシステムとユーザニーズ、社会的期待、規制基準の整合性において、説明可能な人工知能(XAI)の重要性が増している。
一般に、システム品質に影響を与える重要な非機能要件として説明可能性が現れています。
しかし、説明可能性と性能のトレードオフは説明可能性のポジティブな影響と推定される。
説明可能性の要件を満たすことがシステム性能の低下を伴う場合、これらの品質面のどちらが優先され、どのように妥協するかを慎重に検討する必要がある。
本稿では,そのトレードオフを批判的に検討する。
我々は、リソースの可用性、ドメインの特徴、リスクの考慮を組み込んだ、曖昧な方法でアプローチするのが最善である、と論じる。
この研究は、将来の研究とベストプラクティスの基礎を提供することで、AIのためのREの分野を前進させることを目指している。
関連論文リスト
- Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Revisiting the Performance-Explainability Trade-Off in Explainable
Artificial Intelligence (XAI) [0.0]
我々は、リソースの可用性、ドメインの特徴、リスクの考慮を組み込んだ、曖昧な方法でアプローチするのが最善である、と論じる。
この研究は、AIのための要求工学の分野を前進させることを目的としている。
論文 参考訳(メタデータ) (2023-07-26T15:07:40Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Can Requirements Engineering Support Explainable Artificial
Intelligence? Towards a User-Centric Approach for Explainability Requirements [9.625088778011717]
我々は要求工学(RE)と説明可能なAI(XAI)の相乗効果について議論する。
我々は、XAIの分野における課題を強調し、これらの課題を緩和するためにREプラクティスがどのように役立つかに関するフレームワークと研究の方向性を提案します。
論文 参考訳(メタデータ) (2022-06-03T11:17:41Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - What Do We Want From Explainable Artificial Intelligence (XAI)? -- A
Stakeholder Perspective on XAI and a Conceptual Model Guiding
Interdisciplinary XAI Research [0.8707090176854576]
説明可能性アプローチの主な目的は、人工システムに関する特定の関心、目標、期待、ニーズ、および要求を満たすことです。
ステークホルダーのデシデラタを満たすという目標を達成するための説明可能性アプローチがどうあるべきかは、しばしば不明である。
論文 参考訳(メタデータ) (2021-02-15T19:54:33Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - The role of explainability in creating trustworthy artificial
intelligence for health care: a comprehensive survey of the terminology,
design choices, and evaluation strategies [1.2762298148425795]
透明性の欠如は、医療におけるAIシステムの実装における主要な障壁の1つとして認識されている。
我々は最近の文献をレビューし、説明可能なAIシステムの設計について研究者や実践者にガイダンスを提供する。
我々は、説明可能なモデリングが信頼できるAIに貢献できると結論づけるが、説明可能性の利点は実際に証明する必要がある。
論文 参考訳(メタデータ) (2020-07-31T09:08:27Z) - Learning from Learning Machines: Optimisation, Rules, and Social Norms [91.3755431537592]
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
論文 参考訳(メタデータ) (2019-12-29T17:42:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。