論文の概要: Learning from Learning Machines: Optimisation, Rules, and Social Norms
- arxiv url: http://arxiv.org/abs/2001.00006v1
- Date: Sun, 29 Dec 2019 17:42:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-17 07:27:36.824641
- Title: Learning from Learning Machines: Optimisation, Rules, and Social Norms
- Title(参考訳): 学習機械から学ぶ:最適化、ルール、社会規範
- Authors: Travis LaCroix and Yoshua Bengio
- Abstract要約: 経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるようだ。
近年のAIにおけるディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is an analogy between machine learning systems and economic entities in
that they are both adaptive, and their behaviour is specified in a more-or-less
explicit way. It appears that the area of AI that is most analogous to the
behaviour of economic entities is that of morally good decision-making, but it
is an open question as to how precisely moral behaviour can be achieved in an
AI system. This paper explores the analogy between these two complex systems,
and we suggest that a clearer understanding of this apparent analogy may help
us forward in both the socio-economic domain and the AI domain: known results
in economics may help inform feasible solutions in AI safety, but also known
results in AI may inform economic policy. If this claim is correct, then the
recent successes of deep learning for AI suggest that more implicit
specifications work better than explicit ones for solving such problems.
- Abstract(参考訳): 機械学習システムと経済エンティティの間には、どちらも適応性があり、その振る舞いが明示的な方法で指定されている点が類似している。
経済的な実体の行動に最も類似したAIの領域は道徳的に良い意思決定の領域であるように思われるが、AIシステムにおいていかに正確な道徳的行動が達成できるかについては、オープンな疑問である。
本稿では、これらの2つの複雑なシステム間の類似性について検討し、この明らかな類似性についてより明確な理解が、社会経済ドメインとAIドメインの両方において私たちを前進させる可能性があることを示唆する。
この主張が正しければ、最近のAIのディープラーニングの成功は、そのような問題を解決するための明示的な仕様よりも暗黙的な仕様の方が優れていることを示唆している。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems [0.0]
AI倫理の原則と実践の間にはまだギャップがある。
AI倫理を運用しようとする組織が直面する大きな障害のひとつは、明確に定義された材料スコープの欠如である。
論文 参考訳(メタデータ) (2024-07-07T12:16:01Z) - Artificial intelligence, rationalization, and the limits of control in the public sector: the case of tax policy optimization [0.0]
AIシステムに対する批判の大部分が、Weberianの合理化の中心にあるよく知られた緊張から生まれたものであることを示す。
分析の結果,社会的・経済的平等を促進する機械的税制の構築が可能であることが示唆された。
また、AIによるポリシーの最適化は、他の競合する政治的価値観を排除することによってもたらされる、とも強調している。
論文 参考訳(メタデータ) (2024-07-07T11:54:14Z) - Trust, Accountability, and Autonomy in Knowledge Graph-based AI for
Self-determination [1.4305544869388402]
知識グラフ(KG)は、インテリジェントな意思決定を支えるための基盤として登場した。
KGと神経学習の統合は、現在活発な研究のトピックである。
本稿では,KGベースのAIによる自己決定を支援するための基礎的なトピックと研究の柱を概念化する。
論文 参考訳(メタデータ) (2023-10-30T12:51:52Z) - On the Computational Complexity of Ethics: Moral Tractability for Minds
and Machines [0.0]
倫理領域の問題を解決するために人工知能(AI)が使えるかどうかについての議論は、主に人間の能力の観点からAIができることとできないことによって進められてきた。
本稿では,計算システムにできることやできないことに基づいて,どのようなモラルマシンが可能であるかを検討する。
論文 参考訳(メタデータ) (2023-02-08T17:39:58Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - Relational Artificial Intelligence [5.5586788751870175]
AIは伝統的に合理的な意思決定と結びついているが、すべての面においてAIの社会的影響を理解し、形作るためには、リレーショナルな視点が必要である。
AIに対する合理的なアプローチでは、計算アルゴリズムが人間の介入から独立して意思決定を推進し、バイアスと排除をもたらすことが示されている。
物事のリレーショナルな性質に焦点を当てたリレーショナルアプローチは、AIの倫理的、法的、社会的、文化的、環境的な影響を扱うために必要である。
論文 参考訳(メタデータ) (2022-02-04T15:29:57Z) - The AI Economist: Optimal Economic Policy Design via Two-level Deep
Reinforcement Learning [126.37520136341094]
機械学習に基づく経済シミュレーションは強力な政策・メカニズム設計の枠組みであることを示す。
AIエコノミスト(AI Economist)は、エージェントと共同適応するソーシャルプランナーの両方を訓練する2段階のディープRLフレームワークである。
単純な一段階の経済では、AIエコノミストは経済理論の最適税制を回復する。
論文 参考訳(メタデータ) (2021-08-05T17:42:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。