論文の概要: Multi-objective Deep Reinforcement Learning for Mobile Edge Computing
- arxiv url: http://arxiv.org/abs/2307.14346v1
- Date: Wed, 5 Jul 2023 16:36:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-30 03:57:23.918554
- Title: Multi-objective Deep Reinforcement Learning for Mobile Edge Computing
- Title(参考訳): モバイルエッジコンピューティングのための多目的深層強化学習
- Authors: Ning Yang, Junrui Wen, Meng Zhang, Ming Tang
- Abstract要約: モバイルエッジコンピューティング(MEC)は、遅延やエネルギー消費など、さまざまなパフォーマンス指標を優先する次世代のモバイルネットワークアプリケーションに不可欠である。
本研究では,複数のエッジを持つMECにおいて,長期エネルギー消費と送信遅延を最小限に抑えるために,多目的オフロード問題を定式化する。
我々は,MECシステムにおいて,複数のエッジの機能を構築するためのよく設計された状態符号化手法を導入し,遅延とエネルギー消費のユーティリティを正確に計算する洗練された報酬関数を提案する。
- 参考スコア(独自算出の注目度): 11.966938107719903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile edge computing (MEC) is essential for next-generation mobile network
applications that prioritize various performance metrics, including delays and
energy consumption. However, conventional single-objective scheduling solutions
cannot be directly applied to practical systems in which the preferences of
these applications (i.e., the weights of different objectives) are often
unknown or challenging to specify in advance. In this study, we address this
issue by formulating a multi-objective offloading problem for MEC with multiple
edges to minimize expected long-term energy consumption and transmission delay
while considering unknown preferences as parameters. To address the challenge
of unknown preferences, we design a multi-objective (deep) reinforcement
learning (MORL)-based resource scheduling scheme with proximal policy
optimization (PPO). In addition, we introduce a well-designed state encoding
method for constructing features for multiple edges in MEC systems, a
sophisticated reward function for accurately computing the utilities of delay
and energy consumption. Simulation results demonstrate that our proposed MORL
scheme enhances the hypervolume of the Pareto front by up to 233.1% compared to
benchmarks. Our full framework is available at
https://github.com/gracefulning/mec_morl_multipolicy.
- Abstract(参考訳): モバイルエッジコンピューティング(MEC)は、遅延やエネルギー消費など、さまざまなパフォーマンス指標を優先する次世代のモバイルネットワークアプリケーションに不可欠である。
しかし、従来の単一目的スケジューリングソリューションは、これらのアプリケーション(すなわち、異なる目的の重み付け)の好みがしばしば不明で、事前の指定が難しい実用的なシステムに直接適用することはできない。
本研究では,複数のエッジを持つMECの多目的オフロード問題を定式化し,未知の選好をパラメータとして考慮しつつ,予測される長期エネルギー消費と送信遅延を最小化する。
未知の選好の問題に対処するために,多目的(深層)強化学習(morl)に基づく資源スケジューリングスキームをppo(proximal policy optimization)で設計する。
さらに,MECシステムにおける複数エッジの機能構築のためのよく設計された状態符号化手法を導入し,遅延とエネルギー消費のユーティリティを正確に計算するための高度な報酬関数を提案する。
シミュレーションの結果,提案手法はparetoフロントのハイパーボリュームを最大233.1%向上させることがわかった。
私たちのフレームワークはhttps://github.com/gracefulning/mec_morl_multipolicyで利用可能です。
関連論文リスト
- Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks [12.323383132739195]
我々は,無線ネットワークの選択と自律運転ポリシーを協調的に最適化する,新しい多目的強化学習フレームワークを開発した。
提案フレームワークは,車両の運動力学を制御することにより,交通流の最大化と衝突の最小化を目的としている。
提案されたポリシーにより、自動運転車は、接続性を改善した安全な運転行動を採用することができる。
論文 参考訳(メタデータ) (2024-05-18T16:31:32Z) - Distributed Multi-Objective Dynamic Offloading Scheduling for Air-Ground Cooperative MEC [13.71241401034042]
本稿では,MORLとカーネル手法を統合した分散軌道計画とオフロードスケジューリング手法を提案する。
数値的な結果から,n段階の戻り値はカーネルベースのアプローチに有効であり,長期平均バックログ性能の大幅な向上が期待できることがわかった。
論文 参考訳(メタデータ) (2024-03-16T13:50:31Z) - Fractional Deep Reinforcement Learning for Age-Minimal Mobile Edge
Computing [11.403989519949173]
本研究は,AOI( Age-of-Information)によって測定された計算集約更新の時系列に焦点をあてる。
我々は,AoIのタスク更新とオフロードポリシを分断形式で共同で最適化する方法について検討する。
実験の結果,提案アルゴリズムは,いくつかの非フラクタルベンチマークと比較して平均AoIを57.6%削減できることがわかった。
論文 参考訳(メタデータ) (2023-12-16T11:13:40Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
我々は,長期的エネルギー制約のある分散エッジデバイスにおいて,トレーニングデータを時間とともにランダムに生成するフェデレーションエッジ学習(FEEL)システムを検討する。
限られた通信リソースとレイテンシ要件のため、各イテレーションでローカルトレーニングプロセスに参加するのはデバイスのサブセットのみである。
論文 参考訳(メタデータ) (2023-05-02T07:41:16Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
インテリジェント・リフレクション・サーフェス(IRS)は将来の無線ネットワークに広く応用されることが想定されている。
本稿では,エネルギー収穫能力を備えた協調型IRSデバイスを用いたマルチユーザ通信システムについて検討する。
論文 参考訳(メタデータ) (2022-03-26T20:37:14Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
本稿では,最先端セグメンテーションモデルをMESSネットワークに変換するフレームワークを提案する。
パラメトリド早期出口を用いた特別訓練されたCNNは、より簡単なサンプルの推測時に、その深さに沿って保存する。
接続されたセグメンテーションヘッドの数、配置、アーキテクチャとエグジットポリシーを併用して、デバイス機能とアプリケーション固有の要件に適応する。
論文 参考訳(メタデータ) (2021-06-07T11:37:03Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Computation Offloading in Multi-Access Edge Computing Networks: A
Multi-Task Learning Approach [7.203439085947118]
マルチアクセスエッジコンピューティング(MEC)は、いくつかのタスクをMECサーバ(MES)に統合された近接アクセスポイント(AP)にオフロードすることで、モバイル機器が計算集約的なアプリケーションに対応できるようにする可能性をすでに示している。
しかし,MESのネットワーク条件や計算資源が限られているため,モバイル端末によるオフロード決定やMESが割り当てる計算資源は,低コストで効率よく達成できない。
我々はMECネットワークのための動的オフロードフレームワークを提案し、アップリンク非直交多重アクセス(NOMA)を用いて複数のデバイスがアップロードできるようにする。
論文 参考訳(メタデータ) (2020-06-29T15:11:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。