Limits to Analog Reservoir Learning
- URL: http://arxiv.org/abs/2307.14474v4
- Date: Sun, 06 Apr 2025 02:21:08 GMT
- Title: Limits to Analog Reservoir Learning
- Authors: Anthony M. Polloreno,
- Abstract summary: We study the impact of noise on the learning capabilities of analog reservoir computers.<n>We show that the information processing capacity (IPC) is a useful metric for quantifying the degradation of the performance due to noise.<n>We conclude that any physical, analog reservoir computer that is exposed to noise can only be used to perform a amount of learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reservoir computation is a recurrent framework for learning and predicting time series data, that benefits from extremely simple training and interpretability, often as the the dynamics of a physical system. In this paper, we will study the impact of noise on the learning capabilities of analog reservoir computers. Recent work on reservoir computation has shown that the information processing capacity (IPC) is a useful metric for quantifying the degradation of the performance due to noise. We further this analysis and demonstrate that this degradation of the IPC limits the possible features that can be meaningfully constructed in an analog reservoir computing setting. We borrow a result from quantum complexity theory that relates the circuit model of computation to a continuous time model, and demonstrate an exponential reduction in the accessible volume of reservoir configurations. We conclude by relating this degradation in the IPC to the fat-shattering dimension of a family of functions describing the reservoir dynamics, which allows us to express our result in terms of a classification task. We conclude that any physical, analog reservoir computer that is exposed to noise can only be used to perform a polynomial amount of learning, despite the exponentially large latent space, even with an exponential amount of post-processing.
Related papers
- Predicting Probabilities of Error to Combine Quantization and Early Exiting: QuEE [68.6018458996143]
We propose a more general dynamic network that can combine both quantization and early exit dynamic network: QuEE.
Our algorithm can be seen as a form of soft early exiting or input-dependent compression.
The crucial factor of our approach is accurate prediction of the potential accuracy improvement achievable through further computation.
arXiv Detail & Related papers (2024-06-20T15:25:13Z) - Oscillations enhance time-series prediction in reservoir computing with feedback [3.3686252536891454]
Reservoir computing is a machine learning framework used for modeling the brain.
It is difficult to accurately reproduce the long-term target time series because the reservoir system becomes unstable.
This study proposes oscillation-driven reservoir computing (ODRC) with feedback.
arXiv Detail & Related papers (2024-06-05T02:30:29Z) - Stochastic Reservoir Computers [0.0]
In reservoir computing, the number of distinct states of the entire reservoir computer can potentially scale exponentially with the size of the reservoir hardware.
While shot noise is a limiting factor in the performance of reservoir computing, we show significantly improved performance compared to a reservoir computer with similar hardware in cases where the effects of noise are small.
arXiv Detail & Related papers (2024-05-20T21:26:00Z) - Tuning the activation function to optimize the forecast horizon of a
reservoir computer [0.0]
We study the effect of the node activation function on the ability of reservoir computers to learn and predict chaotic time series.
We find that the Forecast Horizon (FH), the time during which the reservoir's predictions remain accurate, can vary by an order of magnitude across a set of 16 activation functions.
arXiv Detail & Related papers (2023-12-20T16:16:01Z) - Squeezing as a resource for time series processing in quantum reservoir
computing [3.072340427031969]
We address the effects of squeezing in neuromorphic machine learning for time series processing.
In particular, we consider a loop-based photonic architecture for reservoir computing.
We demonstrate that multimode squeezing enhances its accessible memory, which improves the performance in several benchmark temporal tasks.
arXiv Detail & Related papers (2023-10-11T11:45:31Z) - Memory capacity of two layer neural networks with smooth activations [27.33243506775655]
We determine the memory capacity of two layer neural networks with $m$ hidden neurons and input dimension $d$.
We derive the precise generic rank of the network's Jacobian, which can be written in terms of Hadamard powers.
Our approach differs from prior works on memory capacity and holds promise for extending to deeper models.
arXiv Detail & Related papers (2023-08-03T19:31:15Z) - Controlling dynamical systems to complex target states using machine
learning: next-generation vs. classical reservoir computing [68.8204255655161]
Controlling nonlinear dynamical systems using machine learning allows to drive systems into simple behavior like periodicity but also to more complex arbitrary dynamics.
We show first that classical reservoir computing excels at this task.
In a next step, we compare those results based on different amounts of training data to an alternative setup, where next-generation reservoir computing is used instead.
It turns out that while delivering comparable performance for usual amounts of training data, next-generation RC significantly outperforms in situations where only very limited data is available.
arXiv Detail & Related papers (2023-07-14T07:05:17Z) - On sampling determinantal and Pfaffian point processes on a quantum
computer [49.1574468325115]
DPPs were introduced by Macchi as a model in quantum optics the 1970s.
Most applications require sampling from a DPP, and given their quantum origin, it is natural to wonder whether sampling a DPP on a classical computer is easier than on a classical one.
Vanilla sampling consists in two steps, of respective costs $mathcalO(N3)$ and $mathcalO(Nr2)$ operations on a classical computer, where $r$ is the rank of the kernel matrix.
arXiv Detail & Related papers (2023-05-25T08:43:11Z) - Optimization of a Hydrodynamic Computational Reservoir through Evolution [58.720142291102135]
We interface with a model of a hydrodynamic system, under development by a startup, as a computational reservoir.
We optimized the readout times and how inputs are mapped to the wave amplitude or frequency using an evolutionary search algorithm.
Applying evolutionary methods to this reservoir system substantially improved separability on an XNOR task, in comparison to implementations with hand-selected parameters.
arXiv Detail & Related papers (2023-04-20T19:15:02Z) - Computationally Budgeted Continual Learning: What Does Matter? [128.0827987414154]
Continual Learning (CL) aims to sequentially train models on streams of incoming data that vary in distribution by preserving previous knowledge while adapting to new data.
Current CL literature focuses on restricted access to previously seen data, while imposing no constraints on the computational budget for training.
We revisit this problem with a large-scale benchmark and analyze the performance of traditional CL approaches in a compute-constrained setting.
arXiv Detail & Related papers (2023-03-20T14:50:27Z) - Detection-Recovery Gap for Planted Dense Cycles [72.4451045270967]
We consider a model where a dense cycle with expected bandwidth $n tau$ and edge density $p$ is planted in an ErdHos-R'enyi graph $G(n,q)$.
We characterize the computational thresholds for the associated detection and recovery problems for the class of low-degree algorithms.
arXiv Detail & Related papers (2023-02-13T22:51:07Z) - Effect of temporal resolution on the reproduction of chaotic dynamics
via reservoir computing [0.0]
Reservoir computing is a machine learning paradigm that uses a structure called a reservoir, which has nonlinearities and short-term memory.
This study analyzes the effect of sampling on the ability of reservoir computing to autonomously regenerate chaotic time series.
arXiv Detail & Related papers (2023-01-27T13:31:15Z) - Dissipation as a resource for Quantum Reservoir Computing [3.4078654008228924]
We show the potential enhancement induced by dissipation in the field of quantum reservoir computing.
Our approach based on continuous dissipation is able not only to reproduce the dynamics of previous proposals of quantum reservoir computing.
arXiv Detail & Related papers (2022-12-22T23:30:07Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
We tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing algorithms are applicable.
The challenges for designing an FL algorithm for X-risks lie in the non-decomability of the objective over multiple machines and the interdependency between different machines.
arXiv Detail & Related papers (2022-10-26T00:23:36Z) - Natural quantum reservoir computing for temporal information processing [4.785845498722406]
Reservoir computing is a temporal information processing system that exploits artificial or physical dissipative dynamics.
This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits.
arXiv Detail & Related papers (2021-07-13T01:58:57Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z) - Random pattern and frequency generation using a photonic reservoir
computer with output feedback [3.0395687958102937]
Reservoir computing is a bio-inspired computing paradigm for processing time dependent signals.
We demonstrate the first opto-electronic reservoir computer with output feedback and test it on two examples of time series generation tasks.
arXiv Detail & Related papers (2020-12-19T07:26:32Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z) - Optimal Learning with Excitatory and Inhibitory synapses [91.3755431537592]
I study the problem of storing associations between analog signals in the presence of correlations.
I characterize the typical learning performance in terms of the power spectrum of random input and output processes.
arXiv Detail & Related papers (2020-05-25T18:25:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.