Words That Stick: Predicting Decision Making and Synonym Engagement
Using Cognitive Biases and Computational Linguistics
- URL: http://arxiv.org/abs/2307.14511v1
- Date: Wed, 26 Jul 2023 21:20:03 GMT
- Title: Words That Stick: Predicting Decision Making and Synonym Engagement
Using Cognitive Biases and Computational Linguistics
- Authors: Nimrod Dvir, Elaine Friedman, Suraj Commuri, Fan Yang, Jennifer Romano
- Abstract summary: This research draws upon cognitive psychology and information systems studies to anticipate user engagement and decision-making on digital platforms.
Our methodology synthesizes four cognitive biasesRepresentativeness, Ease-of-use, Affect, and Distributioninto the READ model.
Through a comprehensive user survey, we assess the model's ability to predict user engagement, discovering that synonyms that accurately represent core ideas, are easy to understand, elicit emotional responses, and are commonly encountered, promote greater user engagement.
- Score: 3.09766013093045
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research draws upon cognitive psychology and information systems studies
to anticipate user engagement and decision-making on digital platforms. By
employing natural language processing (NLP) techniques and insights from
cognitive bias research, we delve into user interactions with synonyms within
digital content. Our methodology synthesizes four cognitive
biasesRepresentativeness, Ease-of-use, Affect, and Distributioninto the READ
model. Through a comprehensive user survey, we assess the model's ability to
predict user engagement, discovering that synonyms that accurately represent
core ideas, are easy to understand, elicit emotional responses, and are
commonly encountered, promote greater user engagement. Crucially, our work
offers a fresh lens on human-computer interaction, digital behaviors, and
decision-making processes. Our results highlight the promise of cognitive
biases as potent indicators of user engagement, underscoring their significance
in designing effective digital content across fields like education and
marketing.
Related papers
- Beyond Text: Leveraging Multi-Task Learning and Cognitive Appraisal Theory for Post-Purchase Intention Analysis [10.014248704653]
This study evaluates multi-task learning frameworks grounded in Cognitive Appraisal Theory to predict user behavior.
Our experiments show that users' language and traits improve predictions above and beyond models predicting only from text.
arXiv Detail & Related papers (2024-07-11T04:57:52Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - A Predictive Model of Digital Information Engagement: Forecasting User
Engagement With English Words by Incorporating Cognitive Biases,
Computational Linguistics and Natural Language Processing [3.09766013093045]
This study introduces and empirically tests a novel predictive model for digital information engagement (IE)
The READ model integrates key cognitive biases with computational linguistics and natural language processing to develop a multidimensional perspective on information engagement.
The READ model's potential extends across various domains, including business, education, government, and healthcare.
arXiv Detail & Related papers (2023-07-26T20:58:47Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - The Ways of Words: The Impact of Word Choice on Information Engagement
and Decision Making [3.09766013093045]
This study explores the impact of phrasing, specifically word choice, on information engagement (IE) and decision making.
The findings suggest that phrasing can have a significant effect on the interpretation of and interaction with digital information.
arXiv Detail & Related papers (2023-05-16T20:46:36Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
We propose a CogAlign approach to integrate cognitive language processing signals into natural language processing models.
We show that CogAlign achieves significant improvements with multiple cognitive features over state-of-the-art models on public datasets.
arXiv Detail & Related papers (2021-06-10T07:10:25Z) - EmoDNN: Understanding emotions from short texts through a deep neural
network ensemble [2.459874436804819]
We propose a framework that infers latent individual aspects from brief contents.
We also present a novel ensemble classifier equipped with dynamic dropout convnets to extract emotions from textual context.
Our proposed model can achieve a higher performance in recognizing emotion from noisy contents.
arXiv Detail & Related papers (2021-06-03T09:17:34Z) - Language Models as Emotional Classifiers for Textual Conversations [3.04585143845864]
We present a novel methodology for classifying emotion in a conversation.
At the backbone of our proposed methodology is a pre-trained Language Model (LM)
We apply our proposed methodology on the IEMOCAP and Friends data sets.
arXiv Detail & Related papers (2020-08-27T20:04:30Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.