Beyond Text: Leveraging Multi-Task Learning and Cognitive Appraisal Theory for Post-Purchase Intention Analysis
- URL: http://arxiv.org/abs/2407.08182v1
- Date: Thu, 11 Jul 2024 04:57:52 GMT
- Title: Beyond Text: Leveraging Multi-Task Learning and Cognitive Appraisal Theory for Post-Purchase Intention Analysis
- Authors: Gerard Christopher Yeo, Shaz Furniturewala, Kokil Jaidka,
- Abstract summary: This study evaluates multi-task learning frameworks grounded in Cognitive Appraisal Theory to predict user behavior.
Our experiments show that users' language and traits improve predictions above and beyond models predicting only from text.
- Score: 10.014248704653
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Supervised machine-learning models for predicting user behavior offer a challenging classification problem with lower average prediction performance scores than other text classification tasks. This study evaluates multi-task learning frameworks grounded in Cognitive Appraisal Theory to predict user behavior as a function of users' self-expression and psychological attributes. Our experiments show that users' language and traits improve predictions above and beyond models predicting only from text. Our findings highlight the importance of integrating psychological constructs into NLP to enhance the understanding and prediction of user actions. We close with a discussion of the implications for future applications of large language models for computational psychology.
Related papers
- Human Action Anticipation: A Survey [86.415721659234]
The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on.
Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation.
arXiv Detail & Related papers (2024-10-17T21:37:40Z) - On the Proper Treatment of Tokenization in Psycholinguistics [53.960910019072436]
The paper argues that token-level language models should be marginalized into character-level language models before they are used in psycholinguistic studies.
We find various focal areas whose surprisal is a better psychometric predictor than the surprisal of the region of interest itself.
arXiv Detail & Related papers (2024-10-03T17:18:03Z) - Third-Party Language Model Performance Prediction from Instruction [59.574169249307054]
Language model-based instruction-following systems have lately shown increasing performance on many benchmark tasks.
A user may easily prompt a model with an instruction without any idea of whether the responses should be expected to be accurate.
We propose a third party performance prediction framework, where a separate model is trained to predict the metric resulting from evaluating an instruction-following system on a task.
arXiv Detail & Related papers (2024-03-19T03:53:47Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Explaining Hate Speech Classification with Model Agnostic Methods [0.9990687944474738]
The research goal of this paper is to bridge the gap between hate speech prediction and the explanations generated by the system to support its decision.
This has been achieved by first predicting the classification of a text and then providing a posthoc, model agnostic and surrogate interpretability approach.
arXiv Detail & Related papers (2023-05-30T19:52:56Z) - Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple
Machine Learning Models [0.2963240482383777]
Procrastination, the irrational delay of tasks, is a common occurrence in online learning.
Research focusing on such predictions is scarce.
Studies involving different types of predictors and comparisons between the predictive performance of various methods are virtually non-existent.
arXiv Detail & Related papers (2022-06-30T07:24:08Z) - Learning Theory of Mind via Dynamic Traits Attribution [59.9781556714202]
We propose a new neural ToM architecture that learns to generate a latent trait vector of an actor from the past trajectories.
This trait vector then multiplicatively modulates the prediction mechanism via a fast weights' scheme in the prediction neural network.
We empirically show that the fast weights provide a good inductive bias to model the character traits of agents and hence improves mindreading ability.
arXiv Detail & Related papers (2022-04-17T11:21:18Z) - Beyond the Tip of the Iceberg: Assessing Coherence of Text Classifiers [0.05857406612420462]
Large-scale, pre-trained language models achieve human-level and superhuman accuracy on existing language understanding tasks.
We propose evaluating systems through a novel measure of prediction coherence.
arXiv Detail & Related papers (2021-09-10T15:04:23Z) - A framework for predicting, interpreting, and improving Learning
Outcomes [0.0]
We develop an Embibe Score Quotient model (ESQ) to predict test scores based on observed academic, behavioral and test-taking features of a student.
ESQ can be used to predict the future scoring potential of a student as well as offer personalized learning nudges.
arXiv Detail & Related papers (2020-10-06T11:22:27Z) - On the Predictive Power of Neural Language Models for Human Real-Time
Comprehension Behavior [29.260666424382446]
We test over two dozen models on how well their next-word expectations predict human reading time on naturalistic text corpora.
We evaluate how features of these models determine their psychometric predictive power, or ability to predict human reading behavior.
For any given perplexity, deep Transformer models and n-gram models show superior psychometric predictive power over LSTM or structurally supervised neural models.
arXiv Detail & Related papers (2020-06-02T19:47:01Z) - Explaining Black Box Predictions and Unveiling Data Artifacts through
Influence Functions [55.660255727031725]
Influence functions explain the decisions of a model by identifying influential training examples.
We conduct a comparison between influence functions and common word-saliency methods on representative tasks.
We develop a new measure based on influence functions that can reveal artifacts in training data.
arXiv Detail & Related papers (2020-05-14T00:45:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.