論文の概要: FocalErrorNet: Uncertainty-aware focal modulation network for
inter-modal registration error estimation in ultrasound-guided neurosurgery
- arxiv url: http://arxiv.org/abs/2307.14520v1
- Date: Wed, 26 Jul 2023 21:42:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 16:29:18.109389
- Title: FocalErrorNet: Uncertainty-aware focal modulation network for
inter-modal registration error estimation in ultrasound-guided neurosurgery
- Title(参考訳): focalerrornet : 不確実性を考慮した焦点変調ネットワークによる超音波ガイド下神経外科手術におけるモーダル間登録誤差推定
- Authors: Soorena Salari, Amirhossein Rasoulian, Hassan Rivaz and Yiming Xiao
- Abstract要約: 術中組織変形(脳シフトと呼ばれる)は、手術対象を移動させ、手術前の計画が無効になる可能性がある。
脳腫瘍手術におけるMRI-iUS登録誤差を正確に評価するために,3次元焦点変調に基づく新しい深層学習手法を提案する。
- 参考スコア(独自算出の注目度): 3.491999371287298
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In brain tumor resection, accurate removal of cancerous tissues while
preserving eloquent regions is crucial to the safety and outcomes of the
treatment. However, intra-operative tissue deformation (called brain shift) can
move the surgical target and render the pre-surgical plan invalid.
Intra-operative ultrasound (iUS) has been adopted to provide real-time images
to track brain shift, and inter-modal (i.e., MRI-iUS) registration is often
required to update the pre-surgical plan. Quality control for the registration
results during surgery is important to avoid adverse outcomes, but manual
verification faces great challenges due to difficult 3D visualization and the
low contrast of iUS. Automatic algorithms are urgently needed to address this
issue, but the problem was rarely attempted. Therefore, we propose a novel deep
learning technique based on 3D focal modulation in conjunction with uncertainty
estimation to accurately assess MRI-iUS registration errors for brain tumor
surgery. Developed and validated with the public RESECT clinical database, the
resulting algorithm can achieve an estimation error of 0.59+-0.57 mm.
- Abstract(参考訳): 脳腫瘍切除では,エロークエント領域を保存しながら癌の組織を正確に除去することが治療の安全性と成果に不可欠である。
しかし、術中組織変形(脳シフトと呼ばれる)は手術対象を移動させ、手術前計画を無効にすることができる。
術中超音波(ius)は脳シフトを追跡するためのリアルタイム画像として採用されており,手術前計画の更新にはモーダル間登録(mri-ius)が必要となることが多い。
手術中の登録結果の品質管理は有害な結果を避けるために重要であるが,手動による検証は困難な3次元可視化とiUSの低コントラストのために大きな課題に直面している。
この問題に対処するためには自動アルゴリズムが緊急に必要とされているが、その問題はほとんど試みられなかった。
そこで我々は,脳腫瘍手術におけるMRI-iUS登録誤差を正確に評価するために,3次元焦点変調に基づく新しい深層学習手法を提案する。
一般のRESECT臨床データベースを用いて開発・検証し,0.59+0.57mmの誤差を推定する。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Dense Error Map Estimation for MRI-Ultrasound Registration in Brain
Tumor Surgery Using Swin UNETR [2.64700310378485]
術中超音波は脳の移動を追跡でき、MRI-iUS登録技術は手術前の計画を更新できる。
しかし,MRI-iUSのリアルタイム登録結果の手作業による評価は困難であり,データの3次元特性に起因して誤りを生じやすい。
We propose a novel deep-learning (DL) based framework with the Swin UNETR to improve 3D-patch-wise dense error map for MRI-iUS registration in iUS-guided brain tumor resection。
論文 参考訳(メタデータ) (2023-08-21T15:19:32Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
本稿では,新しい3次元焦点変調UNetであるFocalSegNetを提案する。
UIA検出では偽陽性率は0.21で感度は0.80であった。
論文 参考訳(メタデータ) (2023-08-06T03:28:08Z) - Automatic registration with continuous pose updates for marker-less
surgical navigation in spine surgery [52.63271687382495]
本研究では, 腰部脊柱管固定術の登録問題を, 無放射線で自動的に解決するアプローチを提案する。
深部神経ネットワークは、腰椎を分割し、その方向を同時に予測するように訓練され、前手術モデルに対する最初のポーズが得られた。
拡張現実ベースのナビゲーションシステムとの統合により、直感的な外科的ガイダンスが提供される。
論文 参考訳(メタデータ) (2023-08-05T16:26:41Z) - Safe Deep RL for Intraoperative Planning of Pedicle Screw Placement [61.28459114068828]
安全な深部強化学習(DRL)に基づく訓練経路計画にリアルタイムな観察を活用するロボット脊椎手術の術中計画手法を提案する。
本手法は,ゴールドスタンダード (GS) 掘削計画に関して,90%の骨貫通を達成できた。
論文 参考訳(メタデータ) (2023-05-09T11:42:53Z) - Localizing the Recurrent Laryngeal Nerve via Ultrasound with a Bayesian
Shape Framework [65.19784967388934]
RLN(recurrent laryngeal nerve)の腫瘍浸潤は, 甲状腺摘出術の抗腫瘍剤であり, 標準喉頭鏡による検出が困難である。
本稿では,外科医がRLNを周囲の臓器に従って識別する標準的なアプローチを模倣した,RLNの局所化のための知識駆動型フレームワークを提案する。
実験結果から, 提案手法は, 最先端手法と比較して, 高いヒット率とかなり小さい距離誤差を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-06-30T13:04:42Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Automatic Detection and Segmentation of Postoperative Cerebellar Damage
Based on Normalization [1.1470070927586016]
小脳損傷の確実な局在化と測定は、損傷した小脳領域と術後の神経学的結果との関係を研究するために不可欠である。
既存の脳の正常化法は術後のスキャンでは信頼性が低いため,手動ラベリングによる外科的損傷の計測が現在行われている。
術後3次元T1MRIを用いて,手術による小脳損傷を自動的に検出・測定する頑健なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-03-03T22:26:59Z) - The Brain Tumor Sequence Registration (BraTS-Reg) Challenge: Establishing Correspondence Between Pre-Operative and Follow-up MRI Scans of Diffuse Glioma Patients [31.567542945171834]
脳腫瘍シーケンス登録(BraTS-Reg)の課題について述べる。
BraTS-Regは、変形可能な登録アルゴリズムのための最初の公開ベンチマーク環境である。
BraTS-Regの目的は、引き続き研究の活発な資源として機能することである。
論文 参考訳(メタデータ) (2021-12-13T19:25:16Z) - 3D AGSE-VNet: An Automatic Brain Tumor MRI Data Segmentation Framework [3.0261170901794308]
グリオーマは最も一般的な脳悪性腫瘍であり、高い死亡率と3%以上の死亡率を有する。
このクリニックで脳腫瘍を取得する主要な方法は、マルチモーダルMRIスキャン画像から脳腫瘍領域のMRIである。
我々はAGSE-VNetと呼ばれる自動脳腫瘍MRIデータセグメンテーションフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-26T09:04:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。