Demonstrating Quantum Computation for Quasiparticle Band Structures
- URL: http://arxiv.org/abs/2307.14607v1
- Date: Thu, 27 Jul 2023 03:45:05 GMT
- Title: Demonstrating Quantum Computation for Quasiparticle Band Structures
- Authors: Takahiro Ohgoe, Hokuto Iwakiri, Masaya Kohda, Kazuhide Ichikawa, Yuya
O. Nakagawa, Hubert Okadome Valencia, and Sho Koh
- Abstract summary: We demonstrate the first-principles calculation of a quasiparticle band structure on actual quantum computers.
This is achieved by hybrid quantum-classical algorithms in conjunction with qubit-reduction and error-mitigation techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding and predicting the properties of solid-state materials from
first-principles has been a great challenge for decades. Owing to the recent
advances in quantum technologies, quantum computations offer a promising way to
achieve this goal. Here, we demonstrate the first-principles calculation of a
quasiparticle band structure on actual quantum computers. This is achieved by
hybrid quantum-classical algorithms in conjunction with qubit-reduction and
error-mitigation techniques. Our demonstration will pave the way to practical
applications of quantum computers.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Bridging Classical and Quantum: Group-Theoretic Approach to Quantum Circuit Simulation [0.0]
Efficiently simulating quantum circuits on classical computers is a fundamental challenge in quantum computing.
This paper presents a novel theoretical approach that achieves exponential speedups (polynomial runtime) over existing simulators.
The findings may have implications for quantum algorithm design, error correction, and the development of more efficient quantum simulators.
arXiv Detail & Related papers (2024-07-28T20:02:21Z) - Universal quantum computation using quantum annealing with the
transverse-field Ising Hamiltonian [0.0]
We present a practical method for implementing universal quantum computation using the transverse-field Ising Hamiltonian.
Our proposal is compatible with D-Wave devices, opening up possibilities for realizing large-scale gate-based quantum computers.
arXiv Detail & Related papers (2024-02-29T12:47:29Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Parameter Estimation of Gravitational Waves with a Quantum Metropolis
Algorithm [0.0]
We explore how recent techniques based on quantum algorithms could surpass this obstacle.
For this purpose, we propose a quantization of the classical algorithms used in the literature for the inference of gravitational wave parameters.
Finally, we develop a quantum environment on classical hardware, implementing a metric to compare quantum versus classical algorithms in a fair way.
arXiv Detail & Related papers (2022-08-10T18:01:21Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum computation of silicon electronic band structure [0.0]
We show that unprecedented methods used in quantum chemistry, designed to simulate molecules on quantum processors, can be extended to calculate properties of periodic solids.
In particular, we present minimal depth circuits implementing the variational quantum eigensolver algorithm and successfully use it to compute the band structure of silicon on a quantum machine for the first time.
arXiv Detail & Related papers (2020-06-06T07:45:06Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.