Machine Learning based Parameter Sensitivity of Regional Climate Models
-- A Case Study of the WRF Model for Heat Extremes over Southeast Australia
- URL: http://arxiv.org/abs/2307.14654v1
- Date: Thu, 27 Jul 2023 07:02:06 GMT
- Title: Machine Learning based Parameter Sensitivity of Regional Climate Models
-- A Case Study of the WRF Model for Heat Extremes over Southeast Australia
- Authors: P. Jyoteeshkumar Reddy, Sandeep Chinta, Richard Matear, John Taylor,
Harish Baki, Marcus Thatcher, Jatin Kala, and Jason Sharples
- Abstract summary: Heatwaves and bushfires cause substantial impacts on society and ecosystems across the globe.
Regional climate models are commonly used to better understand the dynamics of these events.
Here, we focus on the southeast Australian region, one of the global hotspots of heat extremes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heatwaves and bushfires cause substantial impacts on society and ecosystems
across the globe. Accurate information of heat extremes is needed to support
the development of actionable mitigation and adaptation strategies. Regional
climate models are commonly used to better understand the dynamics of these
events. These models have very large input parameter sets, and the parameters
within the physics schemes substantially influence the model's performance.
However, parameter sensitivity analysis (SA) of regional models for heat
extremes is largely unexplored. Here, we focus on the southeast Australian
region, one of the global hotspots of heat extremes. In southeast Australia
Weather Research and Forecasting (WRF) model is the widely used regional model
to simulate extreme weather events across the region. Hence in this study, we
focus on the sensitivity of WRF model parameters to surface meteorological
variables such as temperature, relative humidity, and wind speed during two
extreme heat events over southeast Australia. Due to the presence of multiple
parameters and their complex relationship with output variables, a machine
learning (ML) surrogate-based global sensitivity analysis method is considered
for the SA. The ML surrogate-based Sobol SA is used to identify the sensitivity
of 24 adjustable parameters in seven different physics schemes of the WRF
model. Results show that out of these 24, only three parameters, namely the
scattering tuning parameter, multiplier of saturated soil water content, and
profile shape exponent in the momentum diffusivity coefficient, are important
for the considered meteorological variables. These SA results are consistent
for the two different extreme heat events. Further, we investigated the
physical significance of sensitive parameters. This study's results will help
in further optimising WRF parameters to improve model simulation.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Applications of machine learning to predict seasonal precipitation for East Africa [0.0]
Large-scale climate variability is linked to local or regional temperature or precipitation in a linear or non-linear fashion.
This paper investigates the use of interpretable ML methods to predict seasonal precipitation for East Africa in an operational setting.
arXiv Detail & Related papers (2024-09-10T06:16:03Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Cluster-Segregate-Perturb (CSP): A Model-agnostic Explainability Pipeline for Spatiotemporal Land Surface Forecasting Models [5.586191108738564]
This paper introduces a pipeline that integrates principles from both perturbation-based explainability techniques like LIME and global marginal explainability like PDP.
The proposed pipeline simplifies the undertaking of diverse investigative analyses, such as marginal sensitivity analysis, marginal correlation analysis, lag analysis, etc., on complex land surface forecasting models.
arXiv Detail & Related papers (2024-08-12T04:29:54Z) - Embedding machine-learnt sub-grid variability improves climate model biases [0.44998333629984877]
Under-representation of cloud formation is a long-standing bias associated with climate simulations.
We overcome these biases by embedding a Multi-Output Gaussian Process (MOGP) trained on high resolution Unified Model simulations.
Ten-year predictions are generated for both control and ML-hybrid models.
arXiv Detail & Related papers (2024-06-13T19:35:58Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity [0.0]
We propose a novel approach to Martian climate modeling by leveraging machine learning techniques.
Our study presents a deep neural network designed to accurately model relative humidity in Gale Crater.
We find that our neural network can effectively model relative humidity at Gale crater using a few meteorological variables.
arXiv Detail & Related papers (2023-09-04T08:15:15Z) - A Three-regime Model of Network Pruning [47.92525418773768]
We use temperature-like and load-like parameters to model the impact of neural network (NN) training hyper parameters on pruning performance.
A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance.
Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model.
arXiv Detail & Related papers (2023-05-28T08:09:25Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
Changes in climatic factors, such as changes in temperature, wind speed, sunshine hours, humidity, and solar radiation can have a significant impact on the evaporation process.
The aim of this study is to investigate the feasibility of several machines learning (ML) models for modeling the monthly pan evaporation estimation.
arXiv Detail & Related papers (2021-10-10T10:06:16Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.