Photonic counterdiabatic quantum optimization algorithm
- URL: http://arxiv.org/abs/2307.14853v1
- Date: Thu, 27 Jul 2023 13:33:33 GMT
- Title: Photonic counterdiabatic quantum optimization algorithm
- Authors: Pranav Chandarana, Koushik Paul, Mikel Garcia-de-Andoin, Yue Ban,
Mikel Sanz, Xi Chen
- Abstract summary: We propose a hybrid quantum- approximate optimization algorithm for quantum computing that is tailored for continuous-variable problems.
We conduct proof-of-principle experiments on an-photo quantum chip.
- Score: 3.2174634059872154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a hybrid quantum-classical approximate optimization algorithm for
photonic quantum computing, specifically tailored for addressing
continuous-variable optimization problems. Inspired by counterdiabatic
protocols, our algorithm significantly reduces the required quantum operations
for optimization as compared to adiabatic protocols. This reduction enables us
to tackle non-convex continuous optimization and countably infinite integer
programming within the near-term era of quantum computing. Through
comprehensive benchmarking, we demonstrate that our approach outperforms
existing state-of-the-art hybrid adiabatic quantum algorithms in terms of
convergence and implementability. Remarkably, our algorithm offers a practical
and accessible experimental realization, bypassing the need for high-order
operations and overcoming experimental constraints. We conduct
proof-of-principle experiments on an eight-mode nanophotonic quantum chip,
successfully showcasing the feasibility and potential impact of the algorithm.
Related papers
- Codesigned counterdiabatic quantum optimization on a photonic quantum processor [6.079051215256144]
We focus on the counterdiabatic protocol with a codesigned approach to implement this algorithm on a photonic quantum processor.
We develop and implement an optimized counterdiabatic method by tackling the higher-order many-body interaction terms.
We experimentally demonstrate the advantages of a codesigned mapping of counterdiabatic quantum dynamics for quantum computing on photonic platforms.
arXiv Detail & Related papers (2024-09-26T15:08:19Z) - Performant near-term quantum combinatorial optimization [1.1999555634662633]
We present a variational quantum algorithm for solving optimization problems with linear-depth circuits.
Our algorithm uses an ansatz composed of Hamiltonian generators designed to control each term in the target quantum function.
We conclude our performant and resource-minimal approach is a promising candidate for potential quantum computational advantages.
arXiv Detail & Related papers (2024-04-24T18:49:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Constrained Optimization via Quantum Zeno Dynamics [23.391640416533455]
We introduce a technique that uses quantum Zeno dynamics to solve optimization problems with multiple arbitrary constraints, including inequalities.
We show that the dynamics of quantum optimization can be efficiently restricted to the in-constraint subspace on a fault-tolerant quantum computer.
arXiv Detail & Related papers (2022-09-29T18:00:40Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Approximating the quantum approximate optimization algorithm with
digital-analog interactions [0.0]
We show that the digital-analog paradigm is suited to the variational quantum approximate optimisation algorithm.
We observe regimes of single-qubit operation speed in which the considered variational algorithm provides a significant improvement over non-variational counterparts.
arXiv Detail & Related papers (2020-02-27T16:01:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.