Efficient Interaction-Aware Interval Analysis of Neural Network Feedback Loops
- URL: http://arxiv.org/abs/2307.14938v3
- Date: Thu, 27 Jun 2024 16:00:16 GMT
- Title: Efficient Interaction-Aware Interval Analysis of Neural Network Feedback Loops
- Authors: Saber Jafarpour, Akash Harapanahalli, Samuel Coogan,
- Abstract summary: We propose a computationally efficient framework for interval reachability of systems with neural network controllers.
We use inclusion functions for the open-loop system and the neural network controller to embed the closed-loop system into a larger-dimensional embedding system.
- Score: 4.768272342753616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a computationally efficient framework for interval reachability of systems with neural network controllers. Our approach leverages inclusion functions for the open-loop system and the neural network controller to embed the closed-loop system into a larger-dimensional embedding system, where a single trajectory over-approximates the original system's behavior under uncertainty. We propose two methods for constructing closed-loop embedding systems, which account for the interactions between the system and the controller in different ways. The interconnection-based approach considers the worst-case evolution of each coordinate separately by substituting the neural network inclusion function into the open-loop inclusion function. The interaction-based approach uses novel Jacobian-based inclusion functions to capture the first-order interactions between the open-loop system and the controller by leveraging state-of-the-art neural network verifiers. Finally, we implement our approach in a Python framework called ReachMM to demonstrate its efficiency and scalability on benchmarks and examples ranging to $200$ state dimensions.
Related papers
- Forward Invariance in Neural Network Controlled Systems [5.359060261460183]
We present a framework based on interval analysis and monotone systems theory to certify and search for forward invariant sets in nonlinear systems with neural network controllers.
The framework is automated in Python using our interval analysis toolbox $textttnpinterval$, in conjunction with the symbolic arithmetic toolbox $textttsympy$, demonstrated on an $8$-dimensional leader-follower system.
arXiv Detail & Related papers (2023-09-16T16:49:19Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Interval Reachability of Nonlinear Dynamical Systems with Neural Network
Controllers [5.543220407902113]
This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers.
Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system.
We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system.
arXiv Detail & Related papers (2023-01-19T06:46:36Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - Over-the-Air Split Machine Learning in Wireless MIMO Networks [56.27831295707334]
In split machine learning (ML), different partitions of a neural network (NN) are executed by different computing nodes.
To ease communication burden, over-the-air computation (OAC) can efficiently implement all or part of the computation at the same time of communication.
arXiv Detail & Related papers (2022-10-07T15:39:11Z) - Sparse Interaction Additive Networks via Feature Interaction Detection
and Sparse Selection [10.191597755296163]
We develop a tractable selection algorithm to efficiently identify the necessary feature combinations.
Our proposed Sparse Interaction Additive Networks (SIAN) construct a bridge from simple and interpretable models to fully connected neural networks.
arXiv Detail & Related papers (2022-09-19T19:57:17Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Single-step deep reinforcement learning for open-loop control of laminar
and turbulent flows [0.0]
This research gauges the ability of deep reinforcement learning (DRL) techniques to assist the optimization and control of fluid mechanical systems.
It combines a novel, "degenerate" version of the prototypical policy optimization (PPO) algorithm, that trains a neural network in optimizing the system only once per learning episode.
arXiv Detail & Related papers (2020-06-04T16:11:26Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z) - Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming [19.51345816555571]
We propose a novel forward reachability analysis method for the safety verification of linear time-varying systems with neural networks in feedback.
We show that we can compute these approximate reachable sets using semidefinite programming.
We illustrate our method in a quadrotor example, in which we first approximate a nonlinear model predictive controller via a deep neural network and then apply our analysis tool to certify finite-time reachability and constraint satisfaction of the closed-loop system.
arXiv Detail & Related papers (2020-04-16T18:48:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.