Neural Network-assisted Interval Reachability for Systems with Control Barrier Function-Based Safe Controllers
- URL: http://arxiv.org/abs/2504.08249v1
- Date: Fri, 11 Apr 2025 04:14:55 GMT
- Title: Neural Network-assisted Interval Reachability for Systems with Control Barrier Function-Based Safe Controllers
- Authors: Damola Ajeyemi, Saber Jafarpour, Emiliano Dall'Anese,
- Abstract summary: Control Barrier Functions (CBFs) have been widely utilized in the design of optimization-based controllers and filters for dynamical systems.<n>CBF-based controllers offer safety guarantees, but they can compromise the performance of the system.<n>We propose a computationally efficient interval reachimatability method for performance verification of systems with optimization-based controllers.
- Score: 1.77513002450736
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Control Barrier Functions (CBFs) have been widely utilized in the design of optimization-based controllers and filters for dynamical systems to ensure forward invariance of a given set of safe states. While CBF-based controllers offer safety guarantees, they can compromise the performance of the system, leading to undesirable behaviors such as unbounded trajectories and emergence of locally stable spurious equilibria. Computing reachable sets for systems with CBF-based controllers is an effective approach for runtime performance and stability verification, and can potentially serve as a tool for trajectory re-planning. In this paper, we propose a computationally efficient interval reachability method for performance verification of systems with optimization-based controllers by: (i) approximating the optimization-based controller by a pre-trained neural network to avoid solving optimization problems repeatedly, and (ii) using mixed monotone theory to construct an embedding system that leverages state-of-the-art neural network verification algorithms for bounding the output of the neural network. Results in terms of closeness of solutions of trajectories of the system with the optimization-based controller and the neural network are derived. Using a single trajectory of the embedding system along with our closeness of solutions result, we obtain an over-approximation of the reachable set of the system with optimization-based controllers. Numerical results are presented to corroborate the technical findings.
Related papers
- Resource Optimization for Tail-Based Control in Wireless Networked Control Systems [31.144888314890597]
Achieving control stability is one of the key design challenges of scalable Wireless Networked Control Systems.
This paper explores the use of an alternative control concept defined as tail-based control, which extends the classical Linear Quadratic Regulator (LQR) cost function for multiple dynamic control systems over a shared wireless network.
arXiv Detail & Related papers (2024-06-20T13:27:44Z) - Structured Deep Neural Network-Based Backstepping Trajectory Tracking Control for Lagrangian Systems [9.61674297336072]
The proposed controller can ensure closed-loop stability for any compatible neural network parameters.
We show that in the presence of model approximation errors and external disturbances, the closed-loop stability and tracking control performance can still be guaranteed.
arXiv Detail & Related papers (2024-03-01T09:09:37Z) - Safe Neural Control for Non-Affine Control Systems with Differentiable
Control Barrier Functions [58.19198103790931]
This paper addresses the problem of safety-critical control for non-affine control systems.
It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs)
We incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems.
arXiv Detail & Related papers (2023-09-06T05:35:48Z) - Introduction to Online Control [34.77535508151501]
In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary.<n>The target is to attain low regret against the best policy in hindsight from a benchmark class of policies.
arXiv Detail & Related papers (2022-11-17T16:12:45Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
We introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers.
We then present the pointwise feasibility conditions of the resulting safety controller.
We use these conditions to devise an event-triggered online data collection strategy.
arXiv Detail & Related papers (2022-08-23T05:02:09Z) - Robust stabilization of polytopic systems via fast and reliable neural
network-based approximations [2.2299983745857896]
We consider the design of fast and reliable neural network (NN)-based approximations of traditional stabilizing controllers for linear systems with polytopic uncertainty.
We certify the closed-loop stability and performance of a linear uncertain system when a trained rectified linear unit (ReLU)-based approximation replaces such traditional controllers.
arXiv Detail & Related papers (2022-04-27T21:58:07Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Deep Reinforcement Learning for Wireless Scheduling in Distributed Networked Control [37.10638636086814]
We consider a joint uplink and downlink scheduling problem of a fully distributed wireless control system (WNCS) with a limited number of frequency channels.
We develop a deep reinforcement learning (DRL) based framework for solving it.
To tackle the challenges of a large action space in DRL, we propose novel action space reduction and action embedding methods.
arXiv Detail & Related papers (2021-09-26T11:27:12Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Data-Driven Optimized Tracking Control Heuristic for MIMO Structures: A
Balance System Case Study [8.035375408614776]
The PID is illustrated on a two-input two-output balance system.
It integrates a self-adjusting nonlinear threshold with a neural network to compromise between the desired transient and steady state characteristics.
The neural network is trained upon optimizing a weighted-derivative like objective cost function.
arXiv Detail & Related papers (2021-04-01T02:00:20Z) - Efficient Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers [39.27951763459939]
This work focuses on estimating the forward reachable set of closed-loop systems with NN controllers.
Recent work provides bounds on these reachable sets, yet the computationally efficient approaches provide overly conservative bounds.
This work bridges the gap by formulating a convex optimization problem for reachability analysis for closed-loop systems with NN controllers.
arXiv Detail & Related papers (2021-01-05T22:30:39Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
We propose a generic nonlinear control policy class, parameterized by neural networks, that enforces the same provable robustness criteria as robust control.
We demonstrate the power of this approach on several domains, improving in average-case performance over existing robust control methods and in worst-case stability over (non-robust) deep RL methods.
arXiv Detail & Related papers (2020-11-16T17:14:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.