論文の概要: Federated Model Aggregation via Self-Supervised Priors for Highly
Imbalanced Medical Image Classification
- arxiv url: http://arxiv.org/abs/2307.14959v1
- Date: Thu, 27 Jul 2023 15:52:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-28 14:02:44.795140
- Title: Federated Model Aggregation via Self-Supervised Priors for Highly
Imbalanced Medical Image Classification
- Title(参考訳): 高バランス医用画像分類のための自己教師付き事前処理によるフェデレートモデルアグリゲーション
- Authors: Marawan Elbatel, Hualiang Wang, Robert Mart\'i, Huazhu Fu, Xiaomeng Li
- Abstract要約: 本稿では,公用自己監督型補助ネットワークを用いたクライアント間クラス間変動について検討する。
我々は,グローバルモデル最適化を導くために,自己教師付き事前制御による動的バランスの取れたモデルアグリゲーションを導出する。
- 参考スコア(独自算出の注目度): 31.633870207003092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the medical field, federated learning commonly deals with highly
imbalanced datasets, including skin lesions and gastrointestinal images.
Existing federated methods under highly imbalanced datasets primarily focus on
optimizing a global model without incorporating the intra-class variations that
can arise in medical imaging due to different populations, findings, and
scanners. In this paper, we study the inter-client intra-class variations with
publicly available self-supervised auxiliary networks. Specifically, we find
that employing a shared auxiliary pre-trained model, like MoCo-V2, locally on
every client yields consistent divergence measurements. Based on these
findings, we derive a dynamic balanced model aggregation via self-supervised
priors (MAS) to guide the global model optimization. Fed-MAS can be utilized
with different local learning methods for effective model aggregation toward a
highly robust and unbiased global model. Our code is available at
\url{https://github.com/xmed-lab/Fed-MAS}.
- Abstract(参考訳): 医学分野では、連合学習は一般的に、皮膚病変や消化器画像など、高度に不均衡なデータセットを扱う。
既存の非バランスなデータセット下でのフェデレーション手法は主に、人口、発見、スキャナーが異なるため、医療画像に生じるクラス内変異を組み込むことなく、グローバルモデルを最適化することに焦点を当てている。
本稿では,公用自己監督型補助ネットワークによるクラス間変動について検討する。
具体的には、MoCo-V2のような共有事前学習モデルを用いることで、各クライアントに局所的に一貫したばらつきを測定する。
これらの結果に基づき, 自己教師付き事前 (mas) による動的バランスモデルアグリゲーションを導出し, グローバルモデルの最適化を導く。
Fed-MASは、高度に堅牢で偏りのないグローバルモデルに向けた効果的なモデルアグリゲーションのための異なる局所学習手法で利用することができる。
私たちのコードは \url{https://github.com/xmed-lab/Fed-MAS} で利用可能です。
関連論文リスト
- Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
微調整された事前学習言語モデルは、下流のNLPモデルを構築するための主要なパラダイムとなっている。
これは、より優れた単一モデルを生み出すために、個々のモデル間で知識を融合させる障壁を生み出します。
パラメータ空間のモデルをマージするデータレス知識融合法を提案する。
論文 参考訳(メタデータ) (2022-12-19T20:46:43Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
フェデレートラーニング(Federated Learning, FL)は、医療機関にグローバルモデルにおけるコラボレーションの見通しを提供する分散ラーニング手法である。
本研究では,FLの中間的半言語モデルを生成する適応階層クラスタリング手法について検討する。
本実験は, 分類精度の標準的なFL法と比較して, 不均質分布において有意な性能向上を示した。
論文 参考訳(メタデータ) (2022-07-07T17:25:04Z) - IOP-FL: Inside-Outside Personalization for Federated Medical Image
Segmentation [18.65229252289727]
フェデレートラーニング(Federated Learning)は、複数の医療機関がクライアントデータを集中せずにグローバルなモデルを共同で学習することを可能にする。
We propose a novel unified framework for textitInside and Outside model Personalization in FL (IOP-FL)。
2つの医用画像分割作業に関する実験結果から, 内面および外面の個人化におけるSOTA法よりも有意な改善が認められた。
論文 参考訳(メタデータ) (2022-04-16T08:26:19Z) - Auto-FedAvg: Learnable Federated Averaging for Multi-Institutional
Medical Image Segmentation [7.009650174262515]
フェデレーションラーニング(FL)は、各参加者のプライバシーを維持しながら共同モデルのトレーニングを可能にします。
FedAvgは、FLプロセス中にサーバ上で分散学習されたモデルを集約するために、各クライアントのデータセットサイズに由来する固定重みを使用する標準的なアルゴリズムである。
本研究では,凝集重みを動的に調整した新しいデータ駆動型アプローチ,auto-fedavgを設計した。
論文 参考訳(メタデータ) (2021-04-20T18:29:44Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
高品質なディープラーニングモデルを訓練するには,大量の患者情報を集める必要がある。
患者データのプライバシを保護する必要があるため、複数の機関から中央データベースを組み立てることは困難である。
フェデレート・ラーニング(Federated Learning)は、エンティティのデータを集中化せずに、人口レベルのモデルをトレーニングすることを可能にする。
論文 参考訳(メタデータ) (2020-01-16T04:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。