論文の概要: Matching Patients to Clinical Trials with Large Language Models
- arxiv url: http://arxiv.org/abs/2307.15051v5
- Date: Mon, 18 Nov 2024 03:55:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:11.396998
- Title: Matching Patients to Clinical Trials with Large Language Models
- Title(参考訳): 言語モデルを用いた患者と臨床の整合性の検討
- Authors: Qiao Jin, Zifeng Wang, Charalampos S. Floudas, Fangyuan Chen, Changlin Gong, Dara Bracken-Clarke, Elisabetta Xue, Yifan Yang, Jimeng Sun, Zhiyong Lu,
- Abstract要約: 本稿では,大規模言語モデルを用いたゼロショット患者間マッチングのためのエンドツーエンドフレームワークTrialGPTを紹介する。
TrialGPTは3つのモジュールから構成されており、まず大規模フィルタリングを行い、候補トライアル(TrialGPT-Retrieval)を検索し、次に基準レベルの患者資格(TrialGPT-Matching)を予測し、最終的にトライアルレベルのスコア(TrialGPT-Ranking)を生成する。
- 参考スコア(独自算出の注目度): 29.265158319106604
- License:
- Abstract: Patient recruitment is challenging for clinical trials. We introduce TrialGPT, an end-to-end framework for zero-shot patient-to-trial matching with large language models. TrialGPT comprises three modules: it first performs large-scale filtering to retrieve candidate trials (TrialGPT-Retrieval); then predicts criterion-level patient eligibility (TrialGPT-Matching); and finally generates trial-level scores (TrialGPT-Ranking). We evaluate TrialGPT on three cohorts of 183 synthetic patients with over 75,000 trial annotations. TrialGPT-Retrieval can recall over 90% of relevant trials using less than 6% of the initial collection. Manual evaluations on 1,015 patient-criterion pairs show that TrialGPT-Matching achieves an accuracy of 87.3% with faithful explanations, close to the expert performance. The TrialGPT-Ranking scores are highly correlated with human judgments and outperform the best-competing models by 43.8% in ranking and excluding trials. Furthermore, our user study reveals that TrialGPT can reduce the screening time by 42.6% in patient recruitment. Overall, these results have demonstrated promising opportunities for patient-to-trial matching with TrialGPT.
- Abstract(参考訳): 患者募集は臨床試験では難しい。
本稿では,大規模言語モデルを用いたゼロショット患者間マッチングのためのエンドツーエンドフレームワークTrialGPTを紹介する。
TrialGPTは3つのモジュールから構成されており、まず大規模フィルタリングを行い、候補トライアル(TrialGPT-Retrieval)を検索し、次に基準レベルの患者資格(TrialGPT-Matching)を予測し、最終的にトライアルレベルのスコア(TrialGPT-Ranking)を生成する。
75,000点以上の注釈付き合成患者183名を対象にTrialGPTの評価を行った。
TrialGPT-Retrievalは、初期コレクションの6%未満を使用して、関連するトライアルの90%以上をリコールすることができる。
1,015の患者基準ペアのマニュアル評価では、TrialGPT-Matchingは、専門家のパフォーマンスに近い忠実な説明で87.3%の精度を達成している。
TrialGPT-Rankingスコアは人間の判断と強く相関しており、最高の競合モデルよりも43.8%向上している。
さらに,TrialGPTは患者の採用において,スクリーニング時間を42.6%短縮できることを明らかにした。
以上の結果から,TrialGPTとの患者間マッチングが期待できる可能性が示唆された。
関連論文リスト
- End-To-End Clinical Trial Matching with Large Language Models [0.6151041580858937]
大言語モデル(LLM)を用いた臨床試験のためのエンドツーエンドパイプラインを提案する。
本研究は,93.3%の症例において関連する候補試験を同定し,88.0%の予備的精度を達成している。
私たちの完全なエンドツーエンドパイプラインは、自律的または人間の監督の下で運用することができ、オンコロジーに限定されません。
論文 参考訳(メタデータ) (2024-07-18T12:36:26Z) - Panacea: A foundation model for clinical trial search, summarization, design, and recruitment [29.099676641424384]
パナセアという臨床試験基盤モデルを提案する。
Panaceaは、トライアル検索、トライアル要約、トライアルデザイン、患者と臨床のマッチングなど、複数のタスクを扱うように設計されている。
793,279のトライアル文書と1,113,207のトライアル関連科学論文からなる、TrialAlignという大規模なデータセットも収集しました。
論文 参考訳(メタデータ) (2024-06-25T21:29:25Z) - PRISM: Patient Records Interpretation for Semantic Clinical Trial Matching using Large Language Models [4.438101430231511]
本報告では,実世界のERHを用いた臨床治験の大規模評価について述べる。
本研究は, LLMsが適切な臨床試験で患者に正確に適合する能力を示すものである。
論文 参考訳(メタデータ) (2024-04-23T22:33:19Z) - AutoTrial: Prompting Language Models for Clinical Trial Design [53.630479619856516]
本稿では,言語モデルを用いた臨床検査基準の設計を支援するAutoTrialという手法を提案する。
70K以上の臨床試験で、AutoTrialが高品質な基準テキストを生成することが確認された。
論文 参考訳(メタデータ) (2023-05-19T01:04:16Z) - Improving Patient Pre-screening for Clinical Trials: Assisting
Physicians with Large Language Models [0.0]
LLM(Large Language Models)は臨床情報抽出や臨床推論に有効であることが示されている。
本稿では,患者の総合的医療プロファイルに基づく臨床治験の適性判定に医師を支援するために,インストラクションGPTを用いることを検討した。
論文 参考訳(メタデータ) (2023-04-14T21:19:46Z) - SPOT: Sequential Predictive Modeling of Clinical Trial Outcome with
Meta-Learning [67.8195828626489]
臨床試験は薬物開発に不可欠であるが、時間を要する、費用がかかる、失敗する傾向がある。
本稿では,まず,複数ソースの臨床試験データを関連するトライアルトピックにクラスタリングするために,臨床トライアル結果の逐次予測mOdeling(SPOT)を提案する。
タスクとして各トライアルシーケンスを考慮して、メタ学習戦略を使用して、モデルが最小限のアップデートで新しいタスクに迅速に適応できるポイントを達成する。
論文 参考訳(メタデータ) (2023-04-07T23:04:27Z) - Towards Fair Patient-Trial Matching via Patient-Criterion Level Fairness
Constraint [50.35075018041199]
本研究は,患者基準値の公正度制約を発生させることにより,公正な患者間マッチングの枠組みを提案する。
実世界における患者基準と患者基準の整合性に関する実験結果から,提案手法が偏りやすい予測を効果的に緩和できることが示唆された。
論文 参考訳(メタデータ) (2023-03-24T03:59:19Z) - Classification supporting COVID-19 diagnostics based on patient survey
data [82.41449972618423]
新型コロナウイルス患者の効果的なスクリーニングを可能にするロジスティック回帰とXGBoost分類器が作成された。
得られた分類モデルは、DECODEサービス(decode.polsl.pl)の基礎を提供し、COVID-19病患者のスクリーニング支援に役立てることができる。
このデータセットは、3,000以上のサンプルで構成されており、ポーランドの病院で収集されたアンケートに基づいている。
論文 参考訳(メタデータ) (2020-11-24T17:44:01Z) - COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching [70.08786840301435]
本稿では, CrOss-Modal PseudO-SiamEse Network (COMPOSE) を提案する。
実験の結果,患者基準マッチングでは98.0%,患者基準マッチングでは83.7%の精度でAUCに到達できることがわかった。
論文 参考訳(メタデータ) (2020-06-15T21:01:33Z) - Comparative Analysis of Predictive Methods for Early Assessment of
Compliance with Continuous Positive Airway Pressure Therapy [55.41644538483948]
CPAP (Continuous positive airway pressure, CPAP) は, 夜間のCPAP平均使用時間の4h以上と認められた。
これまでの研究では、治療の遵守に大きく関係した要因が報告されている。
本研究は,CPAP療法を併用したコンプライアンス分類器を患者フォローアップの3つの異なるタイミングで構築することにより,この方向へのさらなる一歩を踏み出すことを目的とする。
論文 参考訳(メタデータ) (2019-12-27T14:44:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。