論文の概要: Mathematical Modeling of BCG-based Bladder Cancer Treatment Using
Socio-Demographics
- arxiv url: http://arxiv.org/abs/2307.15084v1
- Date: Wed, 26 Jul 2023 05:54:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 14:50:57.810380
- Title: Mathematical Modeling of BCG-based Bladder Cancer Treatment Using
Socio-Demographics
- Title(参考訳): 社会デモグラフィーを用いたBCGによる膀胱癌治療の数学的モデリング
- Authors: Elizaveta Savchenko, Ariel Rosenfeld, Svetlana Bunimovich-Mendrazitsky
- Abstract要約: 膀胱癌は、すべての個人に影響を及ぼす最も一般的ながんの1つである。
BCの現在の標準治療は、定期的なBacillus Calmette-Guerin(BCG)免疫療法ベースの治療プロトコルに従っている。
- 参考スコア(独自算出の注目度): 5.874094804342782
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cancer is one of the most widespread diseases around the world with millions
of new patients each year. Bladder cancer is one of the most prevalent types of
cancer affecting all individuals alike with no obvious prototypical patient.
The current standard treatment for BC follows a routine weekly Bacillus
Calmette-Guerin (BCG) immunotherapy-based therapy protocol which is applied to
all patients alike. The clinical outcomes associated with BCG treatment vary
significantly among patients due to the biological and clinical complexity of
the interaction between the immune system, treatments, and cancer cells. In
this study, we take advantage of the patient's socio-demographics to offer a
personalized mathematical model that describes the clinical dynamics associated
with BCG-based treatment. To this end, we adopt a well-established BCG
treatment model and integrate a machine learning component to temporally adjust
and reconfigure key parameters within the model thus promoting its
personalization. Using real clinical data, we show that our personalized model
favorably compares with the original one in predicting the number of cancer
cells at the end of the treatment, with 14.8% improvement, on average.
- Abstract(参考訳): がんは、毎年何百万もの新規患者を抱える世界でも最も広範にある病気の1つである。
膀胱癌は、明らかな原型患者を伴わない全ての個人に影響を及ぼす最も一般的ながんの1つである。
BCの現在の標準治療は、Bacillus Calmette-Guerin(BCG)免疫療法ベースの治療プロトコルに従っており、すべての患者にも適用される。
BCG治療に関連する臨床結果は、免疫系、治療、がん細胞間の相互作用の生物学的および臨床的複雑さにより、患者間で大きく異なる。
本研究は,bcg治療に関連する臨床動態を記述したパーソナライズされた数学的モデルを提供するために,患者の社会デモグラフィを利用する。
この目的のために,確立されたbcg処理モデルを採用し,機械学習コンポーネントを統合して,モデル内のキーパラメータの時間的調整と再構成を行い,パーソナライゼーションを促進する。
実際の臨床データを用いて、我々のパーソナライズされたモデルが、治療終了時のがん細胞の数を平均14.8%改善し、元のモデルと好意的に比較した。
関連論文リスト
- An Explainable AI Model for Predicting the Recurrence of Differentiated Thyroid Cancer [0.0]
本研究は,甲状腺癌の再発を予測するために,機械学習,特にディープラーニングモデルを用いている。
患者の臨床病理学的特徴を含むデータセットを解析することにより、トレーニング中の98%、テスト中の96%の顕著な精度を達成できた。
論文 参考訳(メタデータ) (2024-10-13T23:12:33Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
非小細胞肺癌(NSCLC)は、世界中のがん死亡の主な原因である。
本稿では, 融合医療画像(CT, PET)と臨床健康記録, ゲノムデータとを合成する, マルチモーダルデータの革新的な統合について紹介する。
NSCLCの検出と分類精度の大幅な向上により,本研究は既存のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-27T12:59:29Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [50.80532910808962]
GluFormerは、トランスフォーマーアーキテクチャに基づく生体医学的時間的データの生成基盤モデルである。
GluFormerは5つの地理的領域にまたがる4936人を含む15の異なる外部データセットに一般化されている。
今後4年間の健康状態も予測できる。
論文 参考訳(メタデータ) (2024-08-20T13:19:06Z) - Benchmarking Histopathology Foundation Models for Ovarian Cancer Bevacizumab Treatment Response Prediction from Whole Slide Images [1.4999444543328293]
大規模全スライド画像(WSI)で訓練した最新の病理組織基盤モデルを用いて, 卵巣腫瘍組織の特徴を抽出し, ベクチズマブ反応を予測する。
我々の生存モデルは、統計的に有意な高リスクおよび低リスクのケースを成層化することができる。
論文 参考訳(メタデータ) (2024-07-30T07:15:39Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
胃癌と大腸腺癌は広範囲で難治性の悪性腫瘍である。
医療コミュニティは、患者の予後を推定するための重要な指標として、5年間の生存率を受け入れている。
本研究は胃癌および大腸癌患者の生存予測モデルを改善するための先駆的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-11T21:47:13Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - Leveraging a Joint of Phenotypic and Genetic Features on Cancer Patient
Subgrouping [7.381190270069632]
がん患者サブグループのための表現型および遺伝的特徴の関節を利用したシステムを開発した。
機能前処理では、最も関連する機能を保ちながらフィルタリングを行いました。
がん患者分類では、Random Forests (RF)、Decision Tree (DT)、Support Vector Machine (SVM)、Naive Bayes (NB)、Logistic Regression (LR)、Multilayer Perceptron (MLP)、Gradient Boosting (GB)、Convolutional Neural Network (CNN)、Feedforward Neural Network (FNN)の9つの機械学習モデルを活用しました。
論文 参考訳(メタデータ) (2021-03-30T13:07:05Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
近似計算を用いて生物学的に有意なパラメータを推定するための血小板沈着モデルと推論手法を提案する。
この研究は、CVDの検出と治療のためのパーソナライズされた病理検査の先例のない機会を開く。
論文 参考訳(メタデータ) (2020-10-13T15:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。