論文の概要: Survival Prediction Across Diverse Cancer Types Using Neural Networks
- arxiv url: http://arxiv.org/abs/2404.08713v1
- Date: Thu, 11 Apr 2024 21:47:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 19:02:07.924775
- Title: Survival Prediction Across Diverse Cancer Types Using Neural Networks
- Title(参考訳): ニューラルネットワークを用いた異種癌の生存予測
- Authors: Xu Yan, Weimin Wang, MingXuan Xiao, Yufeng Li, Min Gao,
- Abstract要約: 胃癌と大腸腺癌は広範囲で難治性の悪性腫瘍である。
医療コミュニティは、患者の予後を推定するための重要な指標として、5年間の生存率を受け入れている。
本研究は胃癌および大腸癌患者の生存予測モデルを改善するための先駆的アプローチを提案する。
- 参考スコア(独自算出の注目度): 40.392772795903795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies with high mortality rates and complex treatment landscapes. In response to the critical need for accurate prognosis in cancer patients, the medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes. This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients. Leveraging advanced image analysis techniques, we sliced whole slide images (WSI) of these cancers, extracting comprehensive features to capture nuanced tumor characteristics. Subsequently, we constructed patient-level graphs, encapsulating intricate spatial relationships within tumor tissues. These graphs served as inputs for a sophisticated 4-layer graph convolutional neural network (GCN), designed to exploit the inherent connectivity of the data for comprehensive analysis and prediction. By integrating patients' total survival time and survival status, we computed C-index values for gastric cancer and Colon adenocarcinoma, yielding 0.57 and 0.64, respectively. Significantly surpassing previous convolutional neural network models, these results underscore the efficacy of our approach in accurately predicting patient survival outcomes. This research holds profound implications for both the medical and AI communities, offering insights into cancer biology and progression while advancing personalized treatment strategies. Ultimately, our study represents a significant stride in leveraging AI-driven methodologies to revolutionize cancer prognosis and improve patient outcomes on a global scale.
- Abstract(参考訳): 胃癌と大腸腺癌は、高い死亡率と複雑な治療環境を有する広範囲で困難な悪性腫瘍である。
がん患者の正確な予後に重要なニーズがあるため、医療コミュニティは5年間の生存率を患者の予後を推定するための重要な指標として受け入れてきた。
本研究は胃癌および大腸癌患者の生存予測モデルを改善するための先駆的アプローチを提案する。
高度な画像解析技術を活用し,これらのがんのスライド画像全体(WSI)をスライスし,腫瘍の特徴を捉えた包括的特徴を抽出した。
その後,腫瘍組織内の複雑な空間関係をカプセル化した患者レベルグラフを構築した。
これらのグラフは、包括的な分析と予測のためにデータ固有の接続性を活用するために設計された、洗練された4層グラフ畳み込みニューラルネットワーク(GCN)の入力として機能した。
症例の生存時間と生存状況を統合することで,胃癌のC-index値と大腸癌のC-index値をそれぞれ0.57,0.64と算出した。
これらの結果は,従来の畳み込みニューラルネットワークモデルを上回るものであり,患者の生存率を正確に予測するためのアプローチの有効性を裏付けるものである。
この研究は、パーソナライズされた治療戦略を推進しながら、がんの生物学と進行に関する洞察を提供しながら、医療とAIコミュニティの両方に深い影響を与える。
最終的に、我々の研究は、AI駆動の手法を活用してがんの予後を変革し、世界規模で患者の結果を改善するための重要な一歩である。
関連論文リスト
- xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer [10.515405477496735]
生存予測のための説明可能なセルグラフ(xCG)を提案する。
肺腺癌416例に対する画像量(IMC)データの公開コホートによる検討を行った。
論文 参考訳(メタデータ) (2024-11-12T08:53:49Z) - Predicting Breast Cancer Survival: A Survival Analysis Approach Using Log Odds and Clinical Variables [0.0]
本研究は、乳がん患者の生存確率の予測を促進するために、Cox比例ハザードやパラメトリックサバイバルモデルなどの生存分析技術を用いている。
ナイジェリアのイバダンにあるUniversity College Hospitalが提供するデータセットから、乳がん患者1557人のデータを得た。
論文 参考訳(メタデータ) (2024-10-17T10:01:22Z) - Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
転送学習は、よりリッチなデータを持つドメインから取得した機能を活用して、限られたデータを持つドメインのパフォーマンスを向上させるテクニックである。
本稿では,T2強調画像における乳癌からの転移学習による臨床的に有意な前立腺癌予知の改善について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:57:27Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - AI-Enabled Lung Cancer Prognosis [1.2054979237210064]
肺がんはがんによる死亡の主な原因であり、2020年には全世界で約179万人が死亡している。
これらのうち、非小細胞肺癌(NSCLC)が主な亜型であり、顕著な出血性予後を特徴とする。
人工知能(AI)の最近の進歩は、肺癌の予後に革命をもたらした。
論文 参考訳(メタデータ) (2024-02-12T22:09:43Z) - Cancer-Net PCa-Gen: Synthesis of Realistic Prostate Diffusion Weighted
Imaging Data via Anatomic-Conditional Controlled Latent Diffusion [68.45407109385306]
カナダでは、前立腺がんは男性でもっとも一般的ながんであり、2022年のこの人口統計では、新しいがん症例の20%を占めている。
拡散強調画像(DWI)データを用いた前立腺癌診断,予後,治療計画のためのディープニューラルネットワークの開発には大きな関心が寄せられている。
本研究では,解剖学的条件制御型潜伏拡散戦略の導入により,現実的な前立腺DWIデータを生成するための潜伏拡散の有効性について検討した。
論文 参考訳(メタデータ) (2023-11-30T15:11:03Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
腎細胞癌は生存率の低い重要な世界的な健康上の課題である。
本研究の目的は, 腎細胞癌患者の生存確率を予測できる包括的深層学習モデルを考案することであった。
提案フレームワークは,3次元画像特徴抽出器,臨床変数選択,生存予測の3つのモジュールから構成される。
論文 参考訳(メタデータ) (2023-07-07T13:09:07Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - Lymph Node Graph Neural Networks for Cancer Metastasis Prediction [0.342658286826597]
局所リンパ節に転移する既存の癌の画像特徴をグラフベースで表現する手法を提案する。
我々は,遠隔転移のリスクを正確に予測するために,エッジゲートグラフ畳み込みネットワーク(Gated-GCN)を訓練した。
論文 参考訳(メタデータ) (2021-06-03T09:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。