Unsupervised Graph Anomaly Detection via Multi-Hypersphere Heterophilic Graph Learning
- URL: http://arxiv.org/abs/2503.12037v1
- Date: Sat, 15 Mar 2025 08:08:13 GMT
- Title: Unsupervised Graph Anomaly Detection via Multi-Hypersphere Heterophilic Graph Learning
- Authors: Hang Ni, Jindong Han, Nengjun Zhu, Hao Liu,
- Abstract summary: Graph Anomaly (GAD) plays a vital role in various data mining applications such as e-commerce fraud prevention and malicious user detection.<n>We propose a Heterophilic Graph Detection (HGE) module to learn distinguishable abnormal representations for potential anomalies.<n>Then, we propose a Multi-Hypersphere Learning (MHL) module to enhance the detection capability for context-dependent anomalies.
- Score: 7.277472116667557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Anomaly Detection (GAD) plays a vital role in various data mining applications such as e-commerce fraud prevention and malicious user detection. Recently, Graph Neural Network (GNN) based approach has demonstrated great effectiveness in GAD by first encoding graph data into low-dimensional representations and then identifying anomalies under the guidance of supervised or unsupervised signals. However, existing GNN-based approaches implicitly follow the homophily principle (i.e., the "like attracts like" phenomenon) and fail to learn discriminative embedding for anomalies that connect vast normal nodes. Moreover, such approaches identify anomalies in a unified global perspective but overlook diversified abnormal patterns conditioned on local graph context, leading to suboptimal performance. To overcome the aforementioned limitations, in this paper, we propose a Multi-hypersphere Heterophilic Graph Learning (MHetGL) framework for unsupervised GAD. Specifically, we first devise a Heterophilic Graph Encoding (HGE) module to learn distinguishable representations for potential anomalies by purifying and augmenting their neighborhood in a fully unsupervised manner. Then, we propose a Multi-Hypersphere Learning (MHL) module to enhance the detection capability for context-dependent anomalies by jointly incorporating critical patterns from both global and local perspectives. Extensive experiments on ten real-world datasets show that MHetGL outperforms 14 baselines. Our code is publicly available at https://github.com/KennyNH/MHetGL.
Related papers
- UMGAD: Unsupervised Multiplex Graph Anomaly Detection [40.17829938834783]
We propose a novel Unsupervised Multiplex Graph Anomaly Detection method, named UMGAD.<n>We first learn multi-relational correlations among nodes in multiplex heterogeneous graphs.<n>Then, to further extract abnormal information, we generate attribute-level and subgraph-level augmented-view graphs.<n>Finally, we learn to optimize node attributes and structural features through contrastive learning between original-view and augmented-view graphs.
arXiv Detail & Related papers (2024-11-19T15:15:45Z) - GLADformer: A Mixed Perspective for Graph-level Anomaly Detection [24.961973151394826]
We propose a multi-perspective hybrid graph-level anomaly detector namely GLADformer.
Specifically, we first design a Graph Transformer module with global spectrum enhancement.
To uncover local anomalous attributes, we customize a band-pass spectral GNN message passing module.
arXiv Detail & Related papers (2024-06-02T12:51:48Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.<n> equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.<n>Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection [16.485082741239808]
Unsupervised graph anomaly detection aims at identifying rare patterns that deviate from the majority in a graph without the aid of labels.
Recent advances have utilized Graph Neural Networks (GNNs) to learn effective node representations.
We propose a framework for Guarding Graph Neural Networks for Unsupervised Graph Anomaly Detection (G3AD)
arXiv Detail & Related papers (2024-04-25T07:09:05Z) - Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly
Detection [15.757864894708364]
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority.
We propose a novel few-shot Graph Anomaly Detection model called FMGAD.
We show that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
arXiv Detail & Related papers (2023-11-17T07:49:20Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach [26.973056364587766]
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce.
We propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short)
By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph.
arXiv Detail & Related papers (2022-02-11T09:45:11Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.