論文の概要: Co-attention Graph Pooling for Efficient Pairwise Graph Interaction
Learning
- arxiv url: http://arxiv.org/abs/2307.15377v1
- Date: Fri, 28 Jul 2023 07:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-31 13:23:30.070682
- Title: Co-attention Graph Pooling for Efficient Pairwise Graph Interaction
Learning
- Title(参考訳): 効果的なペアワイズグラフインタラクション学習のためのコアテンショングラフポーリング
- Authors: Junhyun Lee, Bumsoo Kim, Minji Jeon, Jaewoo Kang
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データからの処理と学習に有効であることが証明されている。
グラフプーリングにおけるコアテンションを用いた相互作用表現抽出のための,新しい,効率的なグラフレベルアプローチを提案する。
筆者らの手法であるCAGPool(Co-Attention Graph Pooling)は,従来の手法と比較して,分類処理と回帰処理の両面での競合性能を示す。
- 参考スコア(独自算出の注目度): 19.58671020943416
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNNs) have proven to be effective in processing and
learning from graph-structured data. However, previous works mainly focused on
understanding single graph inputs while many real-world applications require
pair-wise analysis for graph-structured data (e.g., scene graph matching, code
searching, and drug-drug interaction prediction). To this end, recent works
have shifted their focus to learning the interaction between pairs of graphs.
Despite their improved performance, these works were still limited in that the
interactions were considered at the node-level, resulting in high computational
costs and suboptimal performance. To address this issue, we propose a novel and
efficient graph-level approach for extracting interaction representations using
co-attention in graph pooling. Our method, Co-Attention Graph Pooling
(CAGPool), exhibits competitive performance relative to existing methods in
both classification and regression tasks using real-world datasets, while
maintaining lower computational complexity.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データからの処理と学習に有効であることが証明されている。
しかし、多くの実世界のアプリケーションはグラフ構造化データ(例えば、シーングラフマッチング、コード検索、ドラッグドラッグ相互作用予測)のペアワイズ分析を必要としている。
この目的のために、最近の研究はグラフのペア間の相互作用を学ぶことに焦点を移した。
性能は向上したものの、これらの作業はノードレベルでの相互作用を考慮し、高い計算コストと低最適性能をもたらすことに制限されていた。
この問題に対処するために,グラフプーリングにおけるコアテンションを用いたインタラクション表現抽出のための,新規かつ効率的なグラフレベルアプローチを提案する。
提案手法であるCAGPool(Co-Attention Graph Pooling)は,実世界のデータセットを用いた分類タスクと回帰タスクの両方において,計算複雑性を低く保ちながら,既存の手法と競合する性能を示す。
関連論文リスト
- Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
これらの問題に対処するための一般的な学習可能なグラフマッチング法を提案する。
提案手法は,複数のMOTデータセット上での最先端性能を実現する。
画像マッチングでは,一般的な屋内データセットであるScanNetで最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-03-27T17:39:00Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Graph Pooling via Coarsened Graph Infomax [9.045707667111873]
本稿では,各プーリング層の入力と粗いグラフ間の相互情報を最大化するために,粗いグラフプールインフォマキシング(cgi)を提案する。
相互情報ニューラルを実現するために,コントラスト学習を適用し,正負のサンプルを学習するための自己照査に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-04T03:50:21Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - CoSimGNN: Towards Large-scale Graph Similarity Computation [5.17905821006887]
グラフニューラルネットワーク(GNN)はこのタスクにデータ駆動型ソリューションを提供する。
既存のGNNベースの手法は、それぞれ2つのグラフを埋め込んだり、グラフ全体のクロスグラフインタラクションをデプロイしたりするが、まだ競合する結果が得られない。
このフレームワークは,まず適応的なプーリング操作で大きなグラフを埋め込んで粗くし,最後に類似点を求めるために粗いグラフにきめ細かな相互作用を展開させる。
論文 参考訳(メタデータ) (2020-05-14T16:33:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。