論文の概要: Neural Network Graph Similarity Computation Based on Graph Fusion
- arxiv url: http://arxiv.org/abs/2502.18291v1
- Date: Tue, 25 Feb 2025 15:28:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:18:42.628775
- Title: Neural Network Graph Similarity Computation Based on Graph Fusion
- Title(参考訳): グラフ融合に基づくニューラルネットワークグラフ類似性計算
- Authors: Zenghui Chang, Yiqiao Zhang, Hong Cai Chen,
- Abstract要約: 本稿では,グラフ融合と呼ばれる並列グラフ相互作用手法を導入することで,そのアプローチに革命をもたらす。
グラフペア間の類似度をグラフレベルとノードレベルに分けて評価する。
本モデルは,グラフとグラフの分類および回帰作業において,主要なベースラインモデルよりも優れる。
- 参考スコア(独自算出の注目度): 0.4681661603096334
- License:
- Abstract: Graph similarity learning, crucial for tasks such as graph classification and similarity search, focuses on measuring the similarity between two graph-structured entities. The core challenge in this field is effectively managing the interactions between graphs. Traditional methods often entail separate, redundant computations for each graph pair, leading to unnecessary complexity. This paper revolutionizes the approach by introducing a parallel graph interaction method called graph fusion. By merging the node sequences of graph pairs into a single large graph, our method leverages a global attention mechanism to facilitate interaction computations and to harvest cross-graph insights. We further assess the similarity between graph pairs at two distinct levels-graph-level and node-level-introducing two innovative, yet straightforward, similarity computation algorithms. Extensive testing across five public datasets shows that our model not only outperforms leading baseline models in graph-to-graph classification and regression tasks but also sets a new benchmark for performance and efficiency. The code for this paper is open-source and available at https://github.com/LLiRarry/GFM-code.git
- Abstract(参考訳): グラフ分類や類似性探索といったタスクに不可欠なグラフ類似性学習は、2つのグラフ構造化エンティティ間の類似性を測定することに焦点を当てている。
この分野での課題は、グラフ間の相互作用を効果的に管理することである。
従来の手法では、グラフペアごとに冗長な計算を分離することが多いため、不要な複雑さが生じる。
本稿では,グラフ融合と呼ばれる並列グラフ相互作用手法を導入することで,そのアプローチに革命をもたらす。
グラフペアのノードシーケンスを1つの大きなグラフにマージすることで,対話計算の容易化とクロスグラフ洞察の収集にグローバルアテンション機構を活用する。
さらに、2つの異なるレベルグラフレベルとノードレベルのグラフペア間の類似性を評価する。
5つの公開データセットにわたる大規模なテストの結果、我々のモデルはグラフとグラフの分類と回帰タスクにおいて主要なベースラインモデルを上回るだけでなく、パフォーマンスと効率のベンチマークも設定している。
本論文のコードはオープンソースで,https://github.com/LLiRarry/GFM-code.gitで公開されている。
関連論文リスト
- Co-attention Graph Pooling for Efficient Pairwise Graph Interaction
Learning [19.58671020943416]
グラフニューラルネットワーク(GNN)は、グラフ構造化データからの処理と学習に有効であることが証明されている。
グラフプーリングにおけるコアテンションを用いた相互作用表現抽出のための,新しい,効率的なグラフレベルアプローチを提案する。
筆者らの手法であるCAGPool(Co-Attention Graph Pooling)は,従来の手法と比較して,分類処理と回帰処理の両面での競合性能を示す。
論文 参考訳(メタデータ) (2023-07-28T07:53:34Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Graph Partitioning and Graph Neural Network based Hierarchical Graph
Matching for Graph Similarity Computation [5.710312846460821]
グラフ類似性は、下流アプリケーションを容易にするために、1組のグラフ間の類似度スコアを予測することを目的としている。
この問題を効果的に解決するために,PSimGNNと呼ばれるグラフ分割とグラフニューラルネットワークに基づくモデルを提案する。
PSimGNNはグラフ類似度メトリックとして近似グラフ編集距離(GED)を用いてグラフ類似度計算タスクにおける最先端の手法より優れている。
論文 参考訳(メタデータ) (2020-05-16T15:01:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。