YOLOv8 for Defect Inspection of Hexagonal Directed Self-Assembly
Patterns: A Data-Centric Approach
- URL: http://arxiv.org/abs/2307.15516v1
- Date: Fri, 28 Jul 2023 12:17:01 GMT
- Title: YOLOv8 for Defect Inspection of Hexagonal Directed Self-Assembly
Patterns: A Data-Centric Approach
- Authors: Enrique Dehaerne, Bappaditya Dey, Hossein Esfandiar, Lander
Verstraete, Hyo Seon Suh, Sandip Halder, Stefan De Gendt
- Abstract summary: We propose a method for obtaining coherent and complete labels for a dataset of hexagonal contact hole DSA patterns.
We show that YOLOv8, a state-of-the-art neural network, achieves defect detection precisions of more than 0.9 mAP on our final dataset.
- Score: 6.142308190194335
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Shrinking pattern dimensions leads to an increased variety of defect types in
semiconductor devices. This has spurred innovation in patterning approaches
such as Directed self-assembly (DSA) for which no traditional, automatic defect
inspection software exists. Machine Learning-based SEM image analysis has
become an increasingly popular research topic for defect inspection with
supervised ML models often showing the best performance. However, little
research has been done on obtaining a dataset with high-quality labels for
these supervised models. In this work, we propose a method for obtaining
coherent and complete labels for a dataset of hexagonal contact hole DSA
patterns while requiring minimal quality control effort from a DSA expert. We
show that YOLOv8, a state-of-the-art neural network, achieves defect detection
precisions of more than 0.9 mAP on our final dataset which best reflects DSA
expert defect labeling expectations. We discuss the strengths and limitations
of our proposed labeling approach and suggest directions for future work in
data-centric ML-based defect inspection.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - CableInspect-AD: An Expert-Annotated Anomaly Detection Dataset [14.246172794156987]
$textitCableInspect-AD$ is a high-quality dataset created and annotated by domain experts from Hydro-Qu'ebec, a Canadian public utility.
This dataset includes high-resolution images with challenging real-world anomalies, covering defects with varying severity levels.
We present a comprehensive evaluation protocol based on cross-validation to assess models' performances.
arXiv Detail & Related papers (2024-09-30T14:50:13Z) - MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
We propose MeLIAD, a novel methodology for interpretable anomaly detection.
MeLIAD is based on metric learning and achieves interpretability by design without relying on any prior distribution assumptions of true anomalies.
Experiments on five public benchmark datasets, including quantitative and qualitative evaluation of interpretability, demonstrate that MeLIAD achieves improved anomaly detection and localization performance.
arXiv Detail & Related papers (2024-09-20T16:01:43Z) - SINDER: Repairing the Singular Defects of DINOv2 [61.98878352956125]
Vision Transformer models trained on large-scale datasets often exhibit artifacts in the patch token they extract.
We propose a novel fine-tuning smooth regularization that rectifies structural deficiencies using only a small dataset.
arXiv Detail & Related papers (2024-07-23T20:34:23Z) - An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection [0.11184789007828977]
This work introduces a task-agnostic, meta-learning approach to semiconductor defect inspection.
It enables the incremental addition of new defect classes and scales to create a more robust and generalized model.
We have benchmarked our approach using real resist-wafer SEM (Scanning Electron Microscopy) datasets for two process steps, ADI and AEI.
arXiv Detail & Related papers (2024-07-17T16:41:22Z) - Weakly Supervised Anomaly Detection via Knowledge-Data Alignment [24.125871437370357]
Anomaly detection plays a pivotal role in numerous web-based applications, including malware detection, anti-money laundering, device failure detection, and network fault analysis.
Weakly Supervised Anomaly Detection (WSAD) has been introduced with a limited number of labeled anomaly samples to enhance model performance.
We introduce a novel framework Knowledge-Data Alignment (KDAlign) to integrate rule knowledge, typically summarized by human experts, to supplement the limited labeled data.
arXiv Detail & Related papers (2024-02-06T07:57:13Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Improved Defect Detection and Classification Method for Advanced IC
Nodes by Using Slicing Aided Hyper Inference with Refinement Strategy [0.11184789007828977]
In recent years, progress has been made towards high-NA (Numerical Aperture) EUVL (Extreme-Ultraviolet-Lithography) paradigm.
However, a significant increase in defects and the complexity of defect detection becomes more pronounced with high-NA.
In this work, we investigate the use of the Slicing Aided Hyper Inference (SAHI) framework for improving upon current techniques.
arXiv Detail & Related papers (2023-11-19T22:24:19Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.