QbC: Quantum Correctness by Construction
- URL: http://arxiv.org/abs/2307.15641v2
- Date: Mon, 5 Feb 2024 20:21:09 GMT
- Title: QbC: Quantum Correctness by Construction
- Authors: Anurudh Peduri, Ina Schaefer, Michael Walter
- Abstract summary: We propose Quantum Correctness by Construction (QbC), an approach to constructing quantum programs from their specification in a way that ensures correctness.
We use pre- and postconditions to specify program properties, and propose sound and complete refinement rules for constructing programs in a quantum while language from their specification.
We find that the approach naturally suggests how to derive program details, highlighting key design choices along the way.
- Score: 4.572433350229651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to the rapid progress and growing complexity of quantum algorithms,
correctness of quantum programs has become a major concern. Pioneering research
over the past years has proposed various approaches to formally verify quantum
programs using proof systems such as quantum Hoare logic. All these prior
approaches are post-hoc: one first implements a program and only then verifies
its correctness. Here we propose Quantum Correctness by Construction (QbC): an
approach to constructing quantum programs from their specification in a way
that ensures correctness. We use pre- and postconditions to specify program
properties, and propose sound and complete refinement rules for constructing
programs in a quantum while language from their specification. We validate QbC
by constructing quantum programs for idiomatic problems and patterns. We find
that the approach naturally suggests how to derive program details,
highlighting key design choices along the way. As such, we believe that QbC can
play a role in supporting the design and taxonomization of quantum algorithms
and software.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Design by Contract Framework for Quantum Software [1.9988400064884826]
We propose a design-by-contract framework for quantum software.
It provides assertions on the input and output states of all quantum circuits built by certain procedures.
Our framework has sufficient expressive power to verify the whole procedure of quantum software.
arXiv Detail & Related papers (2023-03-31T00:21:28Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Verification of Nondeterministic Quantum Programs [1.9302781323430196]
Nondeterministic choice is a useful program construct that provides a way to describe the behaviour of a program without specifying the details of possible implementations.
Nondeterminism has also been introduced in quantum programming, and the termination of nondeterministic quantum programs has been extensively analysed.
arXiv Detail & Related papers (2023-02-15T22:37:23Z) - Qafny: A Quantum-Program Verifier [39.47005122712576]
We present Qafny, an automated proof system for verifying quantum programs.
At its core, Qafny uses a type-guided quantum proof system that translates quantum operations to classical array operations.
We show how Qafny can efficiently verify important quantum algorithms, including quantum-walk algorithms, Grover's algorithm, and Shor's algorithm.
arXiv Detail & Related papers (2022-11-11T18:50:52Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Proving Quantum Programs Correct [3.2513560268591735]
It verifies the correctness of a range of quantum algorithms including Grover's algorithm and quantum phase estimation.
It aims to highlight both the successes and challenges of formal verification in the quantum context.
arXiv Detail & Related papers (2020-10-03T00:55:41Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - On the Principles of Differentiable Quantum Programming Languages [13.070557640180004]
Variational Quantum Circuits (VQCs) are predicted to be one of the most important near-term quantum applications.
We propose the first formalization of auto-differentiation techniques for quantum circuits.
arXiv Detail & Related papers (2020-04-02T16:46:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.