Continual Learning in Predictive Autoscaling
- URL: http://arxiv.org/abs/2307.15941v2
- Date: Mon, 14 Aug 2023 07:15:21 GMT
- Title: Continual Learning in Predictive Autoscaling
- Authors: Hongyan Hao, Zhixuan Chu, Shiyi Zhu, Gangwei Jiang, Yan Wang, Caigao
Jiang, James Zhang, Wei Jiang, Siqiao Xue, Jun Zhou
- Abstract summary: Predictive Autoscaling is used to forecast the workloads of servers and prepare resources in advance to ensure service level objectives (SLOs) in dynamic cloud environments.
We propose a replay-based continual learning method, i.e., Density-based Memory Selection and Hint-based Network Learning Model (DMSHM)
Our proposed method outperforms state-of-the-art continual learning methods in terms of memory capacity and prediction accuracy.
- Score: 17.438074717702726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive Autoscaling is used to forecast the workloads of servers and
prepare the resources in advance to ensure service level objectives (SLOs) in
dynamic cloud environments. However, in practice, its prediction task often
suffers from performance degradation under abnormal traffics caused by external
events (such as sales promotional activities and applications
re-configurations), for which a common solution is to re-train the model with
data of a long historical period, but at the expense of high computational and
storage costs. To better address this problem, we propose a replay-based
continual learning method, i.e., Density-based Memory Selection and Hint-based
Network Learning Model (DMSHM), using only a small part of the historical log
to achieve accurate predictions. First, we discover the phenomenon of sample
overlap when applying replay-based continual learning in prediction tasks. In
order to surmount this challenge and effectively integrate new sample
distribution, we propose a density-based sample selection strategy that
utilizes kernel density estimation to calculate sample density as a reference
to compute sample weight, and employs weight sampling to construct a new memory
set. Then we implement hint-based network learning based on hint representation
to optimize the parameters. Finally, we conduct experiments on public and
industrial datasets to demonstrate that our proposed method outperforms
state-of-the-art continual learning methods in terms of memory capacity and
prediction accuracy. Furthermore, we demonstrate remarkable practicability of
DMSHM in real industrial applications.
Related papers
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
We propose an uncertainty-aware memory-based approach to solve catastrophic forgetting.
We retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach.
arXiv Detail & Related papers (2024-05-29T09:29:39Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Online Tensor Inference [0.0]
Traditional offline learning, involving the storage and utilization of all data in each computational iteration, becomes impractical for high-dimensional tensor data.
Existing low-rank tensor methods lack the capability for statistical inference in an online fashion.
Our approach employs Gradient Descent (SGD) to enable efficient real-time data processing without extensive memory requirements.
arXiv Detail & Related papers (2023-12-28T16:37:48Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
We present a theoretically optimal solution for addressing both coreset selection and active learning.
Our proposed method, COPS, is designed to minimize the expected loss of a model trained on subsampled data.
arXiv Detail & Related papers (2023-09-05T14:06:33Z) - Sequential Learning Of Neural Networks for Prequential MDL [18.475866691786695]
We evaluate approaches for computing prequential description lengths for image classification datasets with neural networks.
Considering the computational cost, we find that online-learning with rehearsal has favorable performance.
We present description lengths for a suite of image classification datasets that improve upon previously reported results by large margins.
arXiv Detail & Related papers (2022-10-14T16:30:23Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
Fine-tuning a pre-trained model on the target data is widely used in many deep learning applications.
Recent studies have empirically shown that training from scratch has the final performance that is no worse than this pre-training strategy.
We propose a novel selection strategy to select a subset from pre-training data to help improve the generalization on the target task.
arXiv Detail & Related papers (2021-11-24T06:18:32Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - TraDE: Transformers for Density Estimation [101.20137732920718]
TraDE is a self-attention-based architecture for auto-regressive density estimation.
We present a suite of tasks such as regression using generated samples, out-of-distribution detection, and robustness to noise in the training data.
arXiv Detail & Related papers (2020-04-06T07:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.