論文の概要: Model Synthesis for Zero-Shot Model Attribution
- arxiv url: http://arxiv.org/abs/2307.15977v2
- Date: Wed, 5 Jun 2024 04:00:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 04:26:20.255382
- Title: Model Synthesis for Zero-Shot Model Attribution
- Title(参考訳): ゼロショットモデル属性のモデル合成
- Authors: Tianyun Yang, Juan Cao, Danding Wang, Chang Xu,
- Abstract要約: 生成モデルは、芸術、デザイン、人間とコンピュータの相互作用などの様々な分野を形作っている。
実世界の生成モデルの指紋パターンを模倣した多数の合成モデルを生成するモデル合成手法を提案する。
実験により, この指紋抽出装置は, 合成モデルのみを訓練し, 様々な実世界の生成モデルに対して, 印象的なゼロショットの一般化を実現することができた。
- 参考スコア(独自算出の注目度): 26.835046772924258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, generative models are shaping various fields such as art, design, and human-computer interaction, yet accompanied by challenges related to copyright infringement and content management. In response, existing research seeks to identify the unique fingerprints on the images they generate, which can be leveraged to attribute the generated images to their source models. Existing methods, however, are constrained to identifying models within a static set included in the classifier training, failing to adapt to newly emerged unseen models dynamically. To bridge this gap, we aim to develop a generalized model fingerprint extractor capable of zero-shot attribution, effectively attributes unseen models without exposure during training. Central to our method is a model synthesis technique, which generates numerous synthetic models mimicking the fingerprint patterns of real-world generative models. The design of the synthesis technique is motivated by observations on how the basic generative model's architecture building blocks and parameters influence fingerprint patterns, and it is validated through two designed metrics that examine synthetic models' fidelity and diversity. Our experiments demonstrate that this fingerprint extractor, trained solely on synthetic models, achieves impressive zero-shot generalization on a wide range of real-world generative models, improving model identification and verification accuracy on unseen models by over 40% and 15%, respectively, compared to existing approaches.
- Abstract(参考訳): 現在、生成モデルは、芸術、デザイン、人間とコンピュータの相互作用といった様々な分野を形作っているが、著作権侵害やコンテンツ管理に関する課題も伴っている。
既存の研究では、生成した画像のユニークな指紋を識別し、生成した画像をソースモデルに属性付けすることができる。
しかし、既存の手法は、分類器訓練に含まれる静的セット内のモデルを特定することに制約されており、新しく出現した未確認モデルに動的に適応できない。
このギャップを埋めるために,ゼロショット属性を生かした汎用型指紋抽出装置を開発し,トレーニング中に露出することなく効果的に未知のモデルを特徴付けることを目的とする。
本手法の中心は,実世界の生成モデルの指紋パターンを模倣した多数の合成モデルを生成するモデル合成技術である。
合成手法の設計は, 基本生成モデルのアーキテクチャ構築ブロックとパラメータが指紋パターンにどのように影響するかの観察によって動機付けられ, 合成モデルの忠実度と多様性を検証した2つの設計指標によって検証される。
本実験は, 合成モデルのみに特化して訓練された指紋抽出装置において, 様々な実世界の生成モデルに対して, 印象的なゼロショット一般化を実現し, 既存手法と比較して, 未知モデルにおけるモデル同定と検証精度を40%以上向上することを示した。
関連論文リスト
- Learning-based Models for Vulnerability Detection: An Extensive Study [3.1317409221921144]
我々は、最先端の学習ベースアプローチの2つのタイプを広範かつ包括的に調査する。
本稿では,シーケンスベースモデルの優先度と,グラフベースモデルの限定能力について実験的に検証する。
論文 参考訳(メタデータ) (2024-08-14T13:01:30Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Downstream Task-Oriented Generative Model Selections on Synthetic Data
Training for Fraud Detection Models [9.754400681589845]
本稿では,学習不正検出モデルにおける下流タスク指向生成モデル選択問題にアプローチする。
本研究は,ニューラルネットワーク(NN)とベイジアンネットワーク(BN)をベースとした生成モデルの両方が,ゆるやかなモデル解釈可能性制約下での合成トレーニングタスクの完了に適しているが,BNベースの生成モデルは,厳密なモデル解釈可能性制約下での合成トレーニング不正検出モデルにおいて,NNベースより優れていることを裏付けるものである。
論文 参考訳(メタデータ) (2024-01-01T23:33:56Z) - Fine-Tuning Generative Models as an Inference Method for Robotic Tasks [18.745665662647912]
ロボット作業における観察にニューラルネットワークモデルのサンプル生成を迅速に適応させる方法について検討する。
鍵となるアイデアは、観測された証拠と一致する生成サンプルにそれを適合させることで、モデルを素早く微調整することである。
本手法は自己回帰モデルと変分自己エンコーダの両方に適用可能であることを示す。
論文 参考訳(メタデータ) (2023-10-19T16:11:49Z) - On the Stability of Iterative Retraining of Generative Models on their own Data [56.153542044045224]
混合データセットに対する生成モデルの訓練が与える影響について検討する。
まず、初期生成モデルがデータ分布を十分に近似する条件下で反復学習の安定性を実証する。
我々は、正規化フローと最先端拡散モデルを繰り返し訓練することにより、合成画像と自然画像の両方に関する我々の理論を実証的に検証する。
論文 参考訳(メタデータ) (2023-09-30T16:41:04Z) - Model Provenance via Model DNA [23.885185988451667]
本稿では,機械学習モデルの特徴を表現した新しいモデルDNAについて紹介する。
本研究では,対象モデルの事前学習モデルであるかどうかを識別できるモデル証明同定のための効率的なフレームワークを開発する。
論文 参考訳(メタデータ) (2023-08-04T03:46:41Z) - Composing Ensembles of Pre-trained Models via Iterative Consensus [95.10641301155232]
本稿では,異なる事前学習モデルのアンサンブルを構成するための統一的なフレームワークを提案する。
事前学習したモデルを「ジェネレータ」あるいは「スコーラ」として使用し、クローズドループ反復コンセンサス最適化により構成する。
スコアラーのアンサンブルによって達成されたコンセンサスは、シングルスコアラーのフィードバックよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-20T18:46:31Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Learning Robust Representations Of Generative Models Using Set-Based
Artificial Fingerprints [14.191129493685212]
既存の手法はサンプル分布を通してモデル間の距離を近似する。
我々は、生成モデルの表現として、ユニークな痕跡(いわゆる「人工指紋」)を考える。
セットエンコーディングとコントラスト学習に基づく新しい学習手法を提案する。
論文 参考訳(メタデータ) (2022-06-04T23:20:07Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。