論文の概要: Fully $1\times1$ Convolutional Network for Lightweight Image
Super-Resolution
- arxiv url: http://arxiv.org/abs/2307.16140v2
- Date: Tue, 12 Mar 2024 07:23:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-14 02:07:48.227081
- Title: Fully $1\times1$ Convolutional Network for Lightweight Image
Super-Resolution
- Title(参考訳): 1\times1$畳み込みネットワークによる軽量画像の超高解像度化
- Authors: Gang Wu, Junjun Jiang, Kui Jiang, Xianming Liu
- Abstract要約: ディープモデルは、シングルイメージ超解像(SISR)タスク、特に大きなカーネルを持つ大きなモデル(3時間3ドル以上)において重要なプロセスを持つ。
$1times1$の畳み込みは計算効率を大幅に向上させるが、局所的な空間表現の集約に苦労する。
我々は、Shift-Conv-based Network (SCNet) という、シンプルで効果的な1時間1ドルの畳み込みネットワークを提案する。
- 参考スコア(独自算出の注目度): 79.04007257606862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep models have achieved significant process on single image
super-resolution (SISR) tasks, in particular large models with large kernel
($3\times3$ or more). However, the heavy computational footprint of such models
prevents their deployment in real-time, resource-constrained environments.
Conversely, $1\times1$ convolutions bring substantial computational efficiency,
but struggle with aggregating local spatial representations, an essential
capability to SISR models. In response to this dichotomy, we propose to
harmonize the merits of both $3\times3$ and $1\times1$ kernels, and exploit a
great potential for lightweight SISR tasks. Specifically, we propose a simple
yet effective fully $1\times1$ convolutional network, named Shift-Conv-based
Network (SCNet). By incorporating a parameter-free spatial-shift operation, it
equips the fully $1\times1$ convolutional network with powerful representation
capability while impressive computational efficiency. Extensive experiments
demonstrate that SCNets, despite its fully $1\times1$ convolutional structure,
consistently matches or even surpasses the performance of existing lightweight
SR models that employ regular convolutions. The code and pre-trained models can
be found at https://github.com/Aitical/SCNet.
- Abstract(参考訳): 深層モデルはシングルイメージスーパーレゾリューション(sisr)タスク、特に大きなカーネルを持つ大規模モデル(3\times3$以上)において重要なプロセスを達成している。
しかし、そのようなモデルの計算量が多いため、リアルタイムのリソース制約のある環境でのデプロイメントが妨げられる。
逆に、$1\times1$の畳み込みは計算効率を大幅に向上させるが、SISRモデルに不可欠な局所空間表現の集約に苦労する。
この二分法に反応して、$3\times3$と$1\times1$カーネルのメリットを調和させ、軽量なSISRタスクにおいて大きな可能性を活用することを提案する。
具体的には,shift-conv-based network (scnet) という,単純かつ効果的で完全な 1\times1$ 畳み込みネットワークを提案する。
パラメータフリーの空間シフト演算を組み込むことで、計算効率を著しく向上しつつ、強力な表現能力を備えた完全な1\times1$畳み込みネットワークを備える。
SCNetは、完全な1\times1$畳み込み構造にもかかわらず、通常の畳み込みを使用する既存の軽量SRモデルの性能と一貫して一致または超えている。
コードと事前訓練されたモデルはhttps://github.com/Aitical/SCNet.comにある。
関連論文リスト
- EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
本研究は、軽量モデル設計における視覚状態空間モデルの可能性を探究し、EfficientVMambaと呼ばれる新しい効率的なモデル変種を導入することを提案する。
我々のEfficientVMambaは、グローバルおよびローカルの両方の表現機能を利用するように設計されたビルディングブロックを構成する効率的なスキップサンプリングにより、アトラスベースの選択的スキャン手法を統合する。
実験の結果,EfficientVMambaは計算複雑性を縮小し,様々な視覚タスクの競合結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-03-15T02:48:47Z) - HyperZ$\cdot$Z$\cdot$W Operator Connects Slow-Fast Networks for Full
Context Interaction [0.0]
自己注意機構は、ドット製品ベースのアクティベーションを通じてプログラムされた大きな暗黙の重み行列を利用して、訓練可能なパラメータがほとんどないため、長いシーケンスモデリングを可能にする。
本稿では,ネットワークの各層におけるコンテキストの完全な相互作用を実現するために,大きな暗黙のカーネルを用いて残差学習を破棄する可能性について検討する。
このモデルにはいくつかの革新的なコンポーネントが組み込まれており、遅いネットワークを更新するための局所的なフィードバックエラー、安定なゼロ平均機能、より高速なトレーニング収束、より少ないモデルパラメータなど、優れた特性を示している。
論文 参考訳(メタデータ) (2024-01-31T15:57:21Z) - Binarized Spectral Compressive Imaging [59.18636040850608]
ハイパースペクトル画像(HSI)再構成のための既存のディープラーニングモデルは、優れた性能を実現するが、膨大なメモリと計算資源を持つ強力なハードウェアを必要とする。
本稿では,BiSRNet(Biarized Spectral-Redistribution Network)を提案する。
BiSRNetは,提案手法を用いてベースモデルのバイナライズを行う。
論文 参考訳(メタデータ) (2023-05-17T15:36:08Z) - Lightweight and Progressively-Scalable Networks for Semantic
Segmentation [100.63114424262234]
マルチスケール学習フレームワークは,セマンティックセグメンテーションを向上する有効なモデルのクラスと見なされてきた。
本稿では,畳み込みブロックの設計と,複数スケールにわたる相互作用の仕方について,徹底的に解析する。
我々は,軽量で拡張性の高いネットワーク(LPS-Net)を考案した。
論文 参考訳(メタデータ) (2022-07-27T16:00:28Z) - ShuffleMixer: An Efficient ConvNet for Image Super-Resolution [88.86376017828773]
本稿では、大きな畳み込みとチャネル分割シャッフル操作を探索する軽量画像超解像のためのShuffleMixerを提案する。
具体的には,チャネル分割とシャッフルを基本成分とする2つのプロジェクション層を効率よく混合する。
実験結果から,ShuffleMixerはモデルパラメータやFLOPの手法に比べて約6倍小さいことがわかった。
論文 参考訳(メタデータ) (2022-05-30T15:26:52Z) - Dep-$L_0$: Improving $L_0$-based Network Sparsification via Dependency
Modeling [6.081082481356211]
L_0$正規化によるディープニューラルネットワークのトレーニングは、ネットワークプルーニングやスパシフィケーションの顕著なアプローチのひとつだ。
本稿では,ImageNet上のResNet50のような大規模学習タスクに対して一貫性のない処理を行うことを示す。
本稿では,多層パーセプトロンとして効果的にモデル化できるバイナリゲートの依存性モデリングを提案する。
論文 参考訳(メタデータ) (2021-06-30T19:33:35Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
畳み込みニューラルネットワーク(CNN)に基づく単一の画像スーパーリゾリューション(SISR)システムは、膨大な計算コストを必要としながら派手なパフォーマンスを実現します。
SISRモデルの冗長な特徴(すなわちゴースト特徴)を生成するためにシフト演算を用いることを提案する。
提案モジュールに埋め込まれた非コンパクトかつ軽量なSISRモデルの両方が,ベースラインと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-01-21T10:09:47Z) - Fully Dynamic Inference with Deep Neural Networks [19.833242253397206]
Layer-Net(L-Net)とChannel-Net(C-Net)と呼ばれる2つのコンパクトネットワークは、どのレイヤやフィルタ/チャネルが冗長であるかをインスタンス毎に予測する。
CIFAR-10データセットでは、LC-Netは11.9$times$ less floating-point Operations (FLOPs) となり、他の動的推論手法と比較して最大3.3%精度が向上する。
ImageNetデータセットでは、LC-Netは最大1.4$times$ FLOPsを減らし、Top-1の精度は他の方法よりも4.6%高い。
論文 参考訳(メタデータ) (2020-07-29T23:17:48Z) - AANet: Adaptive Aggregation Network for Efficient Stereo Matching [33.39794232337985]
現在の最先端ステレオモデルは、ほとんどが高価な3D畳み込みに基づいている。
エッジフェットング問題を緩和するために,スパースポイントに基づくスケール内コストアグリゲーション手法を提案する。
また、従来のクロススケールなコスト集約アルゴリズムをニューラルネットワーク層に近似して、大きなテクスチャレス領域を処理する。
論文 参考訳(メタデータ) (2020-04-20T18:07:55Z) - XSepConv: Extremely Separated Convolution [60.90871656244126]
極めて分離された畳み込みブロック(XSepConv)を提案する。
空間的に分離可能な畳み込みを奥行きの畳み込みに融合させ、大きなカーネルの計算コストとパラメータサイズの両方を削減する。
XSepConvは、大規模なカーネルサイズを持つバニラ奥行きの畳み込みの効率的な代替として設計されている。
論文 参考訳(メタデータ) (2020-02-27T11:46:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。