Data-Driven Modeling with Experimental Augmentation for the Modulation
Strategy of the Dual-Active-Bridge Converter
- URL: http://arxiv.org/abs/2307.16173v2
- Date: Thu, 3 Aug 2023 01:29:35 GMT
- Title: Data-Driven Modeling with Experimental Augmentation for the Modulation
Strategy of the Dual-Active-Bridge Converter
- Authors: Xinze Li, Josep Pou, Jiaxin Dong, Fanfan Lin, Changyun Wen, Suvajit
Mukherjee, Xin Zhang
- Abstract summary: This paper proposes a novel data-driven modeling with experimental augmentation (D2EA) for power converter modeling.
In D2EA, simulation data aims to establish basic functional landscape, and experimental data focuses on matching actual performance in real world.
The proposed D2EA approach realizes 99.92% efficiency modeling accuracy, and its feasibility is comprehensively validated in 2-kW hardware experiments.
- Score: 8.602361928123244
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: For the performance modeling of power converters, the mainstream approaches
are essentially knowledge-based, suffering from heavy manpower burden and low
modeling accuracy. Recent emerging data-driven techniques greatly relieve human
reliance by automatic modeling from simulation data. However, model discrepancy
may occur due to unmodeled parasitics, deficient thermal and magnetic models,
unpredictable ambient conditions, etc. These inaccurate data-driven models
based on pure simulation cannot represent the practical performance in physical
world, hindering their applications in power converter modeling. To alleviate
model discrepancy and improve accuracy in practice, this paper proposes a novel
data-driven modeling with experimental augmentation (D2EA), leveraging both
simulation data and experimental data. In D2EA, simulation data aims to
establish basic functional landscape, and experimental data focuses on matching
actual performance in real world. The D2EA approach is instantiated for the
efficiency optimization of a hybrid modulation for neutral-point-clamped
dual-active-bridge (NPC-DAB) converter. The proposed D2EA approach realizes
99.92% efficiency modeling accuracy, and its feasibility is comprehensively
validated in 2-kW hardware experiments, where the peak efficiency of 98.45% is
attained. Overall, D2EA is data-light and can achieve highly accurate and
highly practical data-driven models in one shot, and it is scalable to other
applications, effortlessly.
Related papers
- Integrating Physics-Based and Data-Driven Approaches for Probabilistic Building Energy Modeling [5.437298646956505]
Building energy modeling is a key tool for optimizing the performance of building energy systems.<n>Recently, hybrid approaches that combine the strengths of both paradigms have gained attention.
arXiv Detail & Related papers (2025-07-23T14:07:33Z) - Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Ultra-Resolution Adaptation with Ease [62.56434979517156]
We propose a set of key guidelines for ultra-resolution adaptation termed emphURAE.
We show that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable.
Experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations.
arXiv Detail & Related papers (2025-03-20T16:44:43Z) - Active Learning of Model Discrepancy with Bayesian Experimental Design [0.0]
We propose an efficient approach to learn the model discrepancy based on the data from a sequential experimental design (BED)
We show that the proposed method is efficient and robust to the active learning of high-dimensional model discrepancy, using data suggested by the sequential BED.
We also demonstrate that the proposed method is compatible with both classical numerical solvers and modern auto-differentiable solvers.
arXiv Detail & Related papers (2025-02-07T22:54:20Z) - Combining Physics-based and Data-driven Modeling for Building Energy Systems [5.437298646956505]
Building energy modeling plays a vital role in optimizing the operation of building energy systems.
Researchers are combining physics-based and data-driven models into hybrid approaches.
We evaluate four predominant hybrid approaches in building energy modeling through a real-world case study.
arXiv Detail & Related papers (2024-11-01T21:56:39Z) - On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation [2.432448600920501]
This paper introduces the Fine-Tuning Hybrid Dynamics (FTHD) method, which integrates supervised and unsupervised Physics-Informed Neural Networks (PINNs)
FTHD fine-tunes a pre-trained Deep Dynamics Model (DDM) using a smaller training dataset, delivering superior performance compared to state-of-the-art methods.
An Extended Kalman Filter (EKF) is embedded within FTHD to effectively manage noisy real-world data, ensuring accurate denoising.
Results demonstrate that the hybrid approach significantly improves parameter estimation accuracy, even with reduced data, and outperforms existing models.
arXiv Detail & Related papers (2024-09-29T10:33:07Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Digital Twin Data Modelling by Randomized Orthogonal Decomposition and Deep Learning [0.0]
A digital twin is a surrogate model that has the main feature to mirror the original process behavior.
This paper introduces a new framework for creating efficient digital twin models of fluid flows.
We involve the state-of-the-art artificial intelligence Deep Learning (DL) to perform a real-time adaptive calibration of the digital twin model.
arXiv Detail & Related papers (2022-06-17T09:45:04Z) - Combining physics-based and data-driven techniques for reliable hybrid
analysis and modeling using the corrective source term approach [0.0]
Digital twins, autonomous, and artificial intelligent systems require accurate, interpretable, computationally efficient, and generalizable models.
We show how a hybrid approach combining the best of physics-based modeling and data-driven modeling can result in models which can outperform them both.
arXiv Detail & Related papers (2022-06-07T17:10:58Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.