論文の概要: InvVis: Large-Scale Data Embedding for Invertible Visualization
- arxiv url: http://arxiv.org/abs/2307.16176v2
- Date: Fri, 4 Aug 2023 18:47:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-08 20:16:08.586180
- Title: InvVis: Large-Scale Data Embedding for Invertible Visualization
- Title(参考訳): InvVis: 可逆可視化のための大規模データ埋め込み
- Authors: Huayuan Ye, Chenhui Li, Yang Li and Changbo Wang
- Abstract要約: InvVisは、画像から可視化を再構築またはさらに修正する、可逆可視化のための新しいアプローチである。
本稿では,画像形式でのグラフデータを効率よく表現し,大容量データの埋め込みを可能にする新しい手法を提案する。
複数の視点から評価方法を評価するための一連の評価実験を行った。
- 参考スコア(独自算出の注目度): 15.468190084961437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present InvVis, a new approach for invertible visualization, which is
reconstructing or further modifying a visualization from an image. InvVis
allows the embedding of a significant amount of data, such as chart data, chart
information, source code, etc., into visualization images. The encoded image is
perceptually indistinguishable from the original one. We propose a new method
to efficiently express chart data in the form of images, enabling
large-capacity data embedding. We also outline a model based on the invertible
neural network to achieve high-quality data concealing and revealing. We
explore and implement a variety of application scenarios of InvVis.
Additionally, we conduct a series of evaluation experiments to assess our
method from multiple perspectives, including data embedding quality, data
restoration accuracy, data encoding capacity, etc. The result of our
experiments demonstrates the great potential of InvVis in invertible
visualization.
- Abstract(参考訳): InvVisは、画像から可視化を再構成またはさらに修正する、可逆可視化のための新しいアプローチである。
InvVisは、チャートデータ、チャート情報、ソースコードなど、膨大な量のデータを視覚化画像に埋め込むことができる。
符号化された画像は、原画像と知覚的に区別できない。
画像の形でグラフデータを効率よく表現し,大容量データの埋め込みを可能にする手法を提案する。
また,インバータブルニューラルネットワークに基づくモデルを概説し,高品質なデータ隠蔽と公開を実現する。
InvVisのさまざまなアプリケーションシナリオを調査し、実装する。
さらに,データ埋め込み品質,データ復元精度,データ符号化能力など,さまざまな観点から評価を行うための一連の評価実験を実施している。
実験の結果, 可逆可視化におけるInvVisの大きな可能性を示した。
関連論文リスト
- Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
本稿では、画像理解に特化して自己学習アプローチを強調する自己学習 on Image (STIC)を紹介する。
まず、ラベルのない画像を用いて、画像記述の好みを自己構築する。
抽出した視覚情報に対する推論をさらに自己改善するため,既存の命令調整データのごく一部をモデルに再利用する。
論文 参考訳(メタデータ) (2024-05-30T05:53:49Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
論文 参考訳(メタデータ) (2024-05-23T09:13:36Z) - Sequential Modeling Enables Scalable Learning for Large Vision Models [120.91839619284431]
本稿では,言語データを用いずにLVM(Large Vision Model)を学習できる新しい逐次モデリング手法を提案する。
我々は、生画像やビデオや注釈付きデータソースを表現できる共通フォーマット「視覚文」を定義した。
論文 参考訳(メタデータ) (2023-12-01T18:59:57Z) - Visual Data-Type Understanding does not emerge from Scaling
Vision-Language Models [31.69213233651326]
視覚データ型識別の新しい課題について紹介する。
39の視覚言語モデル(VLM)の広範囲なゼロショット評価は、微妙なパフォーマンスランドスケープを示している。
論文 参考訳(メタデータ) (2023-10-12T17:59:30Z) - EVA: Exploring the Limits of Masked Visual Representation Learning at
Scale [46.952339726872374]
EVAは視覚中心の基盤モデルで、大規模に視覚表現の限界を探索する。
EVAは、目に見える画像パッチに調整されたマスクされた画像テキスト整列視覚機能を再構築するために事前訓練されたバニラViTである。
EVAから巨大なCLIPのビジョンタワーを初期化することで、トレーニングを大幅に安定させ、より少ないサンプルと少ない計算でスクラッチからトレーニングを上回ります。
論文 参考訳(メタデータ) (2022-11-14T18:59:52Z) - ViewFool: Evaluating the Robustness of Visual Recognition to Adversarial
Viewpoints [42.64942578228025]
本研究では,視覚認識モデルにミスリードする敵対的視点を見つけるために,ViewFoolという新しい手法を提案する。
現実世界の物体をニューラル放射場(NeRF)として符号化することにより、ViewFoolは多様な敵の視点の分布を特徴付ける。
論文 参考訳(メタデータ) (2022-10-08T03:06:49Z) - Peripheral Vision Transformer [52.55309200601883]
我々は生物学的にインスパイアされたアプローチを採用し、視覚認識のためのディープニューラルネットワークの周辺視覚をモデル化する。
本稿では,マルチヘッド自己アテンション層に周辺位置エンコーディングを組み込むことにより,トレーニングデータから視覚領域を様々な周辺領域に分割することをネットワークが学べるようにすることを提案する。
大規模画像Netデータセット上でPerViTと呼ばれる提案したネットワークを評価し,マシン知覚モデルの内部動作を体系的に検討した。
論文 参考訳(メタデータ) (2022-06-14T12:47:47Z) - Off-policy Imitation Learning from Visual Inputs [83.22342811160114]
本稿では、政治以外の学習方法、データ拡張、エンコーダ技術からなるOPIfVIを提案する。
OPIfVIは、エキスパートレベルのパフォーマンスを実現し、既存のベースラインを上回ります。
論文 参考訳(メタデータ) (2021-11-08T09:06:12Z) - VizAI : Selecting Accurate Visualizations of Numerical Data [2.6039035727217907]
VizAIは、データの様々な統計特性を最初に生成する生成的識別フレームワークである。
これは、視覚化されるデータの真の統計に最もよく一致する視覚化を選択する識別モデルにリンクされている。
VizAIは、最小限の監督で容易に訓練でき、様々な監督レベルの設定に適応できる。
論文 参考訳(メタデータ) (2021-11-07T22:05:44Z) - Neuromorphologicaly-preserving Volumetric data encoding using VQ-VAE [4.221619479687068]
VQ-VAEにインスパイアされたネットワークは、全解像度の3D脳の容積を効率よくエンコードし、画像の忠実さを維持しながら元のサイズの0.825%$に圧縮できることを示す。
次に、VQ-VAEデコードされた画像は、ボクセルに基づく形態学およびセグメンテーション実験により、元のデータの形態的特性を保っていることを示す。
論文 参考訳(メタデータ) (2020-02-13T18:18:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。