論文の概要: Efficient Visual State Space Model for Image Deblurring
- arxiv url: http://arxiv.org/abs/2405.14343v1
- Date: Thu, 23 May 2024 09:13:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-24 17:54:56.018766
- Title: Efficient Visual State Space Model for Image Deblurring
- Title(参考訳): 画像分解のための高能率視覚状態空間モデル
- Authors: Lingshun Kong, Jiangxin Dong, Ming-Hsuan Yang, Jinshan Pan,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
本稿では,画像のデブロアに対する簡易かつ効果的な視覚状態空間モデル(EVSSM)を提案する。
- 参考スコア(独自算出の注目度): 83.57239834238035
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration. ViTs typically yield superior results in image restoration compared to CNNs due to their ability to capture long-range dependencies and input-dependent characteristics. However, the computational complexity of Transformer-based models grows quadratically with the image resolution, limiting their practical appeal in high-resolution image restoration tasks. In this paper, we propose a simple yet effective visual state space model (EVSSM) for image deblurring, leveraging the benefits of state space models (SSMs) to visual data. In contrast to existing methods that employ several fixed-direction scanning for feature extraction, which significantly increases the computational cost, we develop an efficient visual scan block that applies various geometric transformations before each SSM-based module, capturing useful non-local information and maintaining high efficiency. Extensive experimental results show that the proposed EVSSM performs favorably against state-of-the-art image deblurring methods on benchmark datasets and real-captured images.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)とビジョントランスフォーマー(ViT)は、画像復元において優れた性能を発揮している。
ViTは、長い範囲の依存関係と入力依存特性をキャプチャする能力のため、CNNと比較して画像復元において優れた結果をもたらすのが一般的である。
しかし、Transformerベースのモデルの計算複雑性は画像解像度の2倍に増大し、高解像度画像復元タスクにおける現実的な魅力が制限される。
本稿では,視覚データに対する状態空間モデル(SSM)の利点を生かした,画像のデブロアリングに有効な視覚状態空間モデル(EVSSM)を提案する。
計算コストを大幅に向上させる特徴抽出にいくつかの固定方向走査を用いる既存の手法とは対照的に,各SSMモジュールの前に様々な幾何学的変換を適用し,有用な非局所情報をキャプチャし,高い効率を維持する,効率的なビジュアルスキャンブロックを開発する。
大規模な実験結果から,提案したESSMは,ベンチマークデータセットや実撮影画像の最先端画像デブロアリング手法に対して良好に動作することが示された。
関連論文リスト
- Multi-Scale Representation Learning for Image Restoration with State-Space Model [13.622411683295686]
効率的な画像復元のためのマルチスケール状態空間モデル(MS-Mamba)を提案する。
提案手法は,計算複雑性を低く保ちながら,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2024-08-19T16:42:58Z) - Scalable Visual State Space Model with Fractal Scanning [16.077348474371547]
State Space Models (SSM) はTransformerモデルの効率的な代替品として登場した。
本稿では, フラクタル走査曲線を用いたパッチシリアライゼーションを提案する。
画像分類,検出,セグメンテーションタスクにおいて,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-05-23T12:12:11Z) - VmambaIR: Visual State Space Model for Image Restoration [36.11385876754612]
VmambaIRは、画像復元タスクに線形に複雑な状態空間モデル(SSM)を導入する。
VmambaIRは、より少ない計算資源とパラメータで最先端(SOTA)性能を達成する。
論文 参考訳(メタデータ) (2024-03-18T02:38:55Z) - Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like
Architectures [99.20299078655376]
本稿では、NLPフィールドで使用されるRWKVモデルから適応したVision-RWKVを紹介する。
我々のモデルは、スパース入力を効率的に処理し、ロバストなグローバル処理能力を実証するために設計されている。
評価の結果,VRWKVは画像分類におけるViTの性能を超え,高速化とメモリ使用量の削減を図っている。
論文 参考訳(メタデータ) (2024-03-04T18:46:20Z) - EPNet: An Efficient Pyramid Network for Enhanced Single-Image
Super-Resolution with Reduced Computational Requirements [12.439807086123983]
シングルイメージ超解像(SISR)は、ディープラーニングの統合によって大幅に進歩した。
本稿では,エッジ分割ピラミッドモジュール (ESPM) とパノラマ特徴抽出モジュール (PFEM) を調和して結合し,既存の手法の限界を克服する,EPNet (Efficient Pyramid Network) を提案する。
論文 参考訳(メタデータ) (2023-12-20T19:56:53Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
本稿では,ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とする。
我々は、高解像度の空間的詳細を同時に保存しながら、複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
提案手法は,デフォーカス・デブロアリング,画像デノイング,超解像,画像強調など,さまざまな画像処理タスクに対して,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2022-04-19T17:59:45Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
マルチスケールの伝搬により微分同相モデルを最適化する,新しいディープラーニングベースのフレームワークを開発した。
我々は,脳MRIデータにおける画像-アトラス登録,肝CTデータにおける画像-画像登録を含む,3次元ボリュームデータセットにおける画像登録実験の2つのグループを実行する。
論文 参考訳(メタデータ) (2020-04-30T03:23:45Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。