論文の概要: Shuffled Differentially Private Federated Learning for Time Series Data
Analytics
- arxiv url: http://arxiv.org/abs/2307.16196v1
- Date: Sun, 30 Jul 2023 10:30:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 17:07:28.661459
- Title: Shuffled Differentially Private Federated Learning for Time Series Data
Analytics
- Title(参考訳): 時系列データ分析のための個人別フェデレーション学習のシャッフル
- Authors: Chenxi Huang, Chaoyang Jiang, Zhenghua Chen
- Abstract要約: 時系列データのためのプライバシー保護フェデレーション学習アルゴリズムを開発した。
具体的には、クライアントにプライバシ保護信頼境界を拡張するために、ローカルな差分プライバシーを使用します。
また、局所的な差分プライバシーを活用することによって生じる精度低下を軽減し、プライバシーの増幅を実現するためのシャッフル手法も取り入れた。
- 参考スコア(独自算出の注目度): 10.198481976376717
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Trustworthy federated learning aims to achieve optimal performance while
ensuring clients' privacy. Existing privacy-preserving federated learning
approaches are mostly tailored for image data, lacking applications for time
series data, which have many important applications, like machine health
monitoring, human activity recognition, etc. Furthermore, protective noising on
a time series data analytics model can significantly interfere with
temporal-dependent learning, leading to a greater decline in accuracy. To
address these issues, we develop a privacy-preserving federated learning
algorithm for time series data. Specifically, we employ local differential
privacy to extend the privacy protection trust boundary to the clients. We also
incorporate shuffle techniques to achieve a privacy amplification, mitigating
the accuracy decline caused by leveraging local differential privacy. Extensive
experiments were conducted on five time series datasets. The evaluation results
reveal that our algorithm experienced minimal accuracy loss compared to
non-private federated learning in both small and large client scenarios. Under
the same level of privacy protection, our algorithm demonstrated improved
accuracy compared to the centralized differentially private federated learning
in both scenarios.
- Abstract(参考訳): 信頼できる連合学習は、クライアントのプライバシを確保しながら、最適なパフォーマンスを達成することを目的としています。
既存のプライバシー保存型連合学習アプローチは、主に画像データ用に調整されており、時系列データのためのアプリケーションがない。
さらに、時系列データ分析モデルにおける保護ノイズ化は、時間依存学習に著しく干渉し、精度が低下する。
これらの問題に対処するため、時系列データのためのプライバシー保護フェデレーション学習アルゴリズムを開発した。
具体的には、プライバシ保護信頼境界をクライアントに拡張するために、ローカルディファレンシャルプライバシを採用しています。
シャッフル技術も取り入れて,プライバシの増幅を実現し,ローカルディファレンシャルプライバシの活用による精度低下を緩和しています。
5つの時系列データセットで広範な実験が行われた。
評価の結果,小クライアントシナリオと大規模クライアントシナリオの両方において,非プライベートフェデレーション学習に比べて精度の低下が最小であることが判明した。
同じレベルのプライバシ保護の下では,両シナリオの集中型差分私的学習と比較して精度が向上した。
関連論文リスト
- Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
本稿では,LLMのプライバシ生成モデルであるPrivChatGPTという概念モデルを提案する。
PrivChatGPTは、データキュレーション/前処理中にユーザのプライバシを保護し、プライベートコンテキストの保存と大規模データのプライベートトレーニングプロセスという2つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-19T06:55:13Z) - Locally Differentially Private Distributed Online Learning with Guaranteed Optimality [1.800614371653704]
本稿では,分散オンライン学習における差分プライバシーと学習精度を両立させる手法を提案する。
予想される即時後悔の減少を確実にする一方で、このアプローチは有限累積プライバシー予算を同時に確保することができる。
私たちの知る限りでは、このアルゴリズムは厳密な局所的な差分プライバシーと学習精度の両方を確実にする最初のアルゴリズムです。
論文 参考訳(メタデータ) (2023-06-25T02:05:34Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
プライベート機械学習では、既存の監査メカニズムは厳格である。
彼らは不確実な最悪の仮定の下でのみ厳密な見積もりを行う。
我々は、自然(逆向きではない)データセットの厳密なプライバシー推定を得られる改善された監査スキームを設計する。
論文 参考訳(メタデータ) (2023-02-15T21:40:33Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
DP-SGDで訓練されたモデルをリリースする際の個々の事例に対するプライバシー保証を特徴付ける。
ほとんどの例では、最悪のケースよりも強力なプライバシー保証を享受しています。
これは、モデルユーティリティの観点からは守られないグループが同時に、より弱いプライバシー保証を経験することを意味する。
論文 参考訳(メタデータ) (2022-06-06T13:49:37Z) - Mixed Differential Privacy in Computer Vision [133.68363478737058]
AdaMixは、プライベートとパブリックの両方の画像データを使用して、ディープニューラルネットワーク分類器をトレーニングするための適応型微分プライベートアルゴリズムである。
プライベートデータを無視する数ショットあるいはゼロショットの学習ベースラインは、大規模なプライベートデータセットの微調整よりも優れています。
論文 参考訳(メタデータ) (2022-03-22T06:15:43Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Federated $f$-Differential Privacy [19.499120576896228]
フェデレートラーニング(Federated Learning, FL)とは、クライアントが繰り返し情報を共有することによってモデルを学ぶ訓練パラダイムである。
フェデレーション設定に特化した新しい概念である、フェデレーション$f$-differenceプライバシを紹介します。
そこで我々は,最先端flアルゴリズムの大規模ファミリーに対応する汎用的federated learningフレームワークprifedsyncを提案する。
論文 参考訳(メタデータ) (2021-02-22T16:28:21Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - Differentially private cross-silo federated learning [16.38610531397378]
厳密なプライバシは、分散機械学習において最重要事項である。
本稿では,いわゆるクロスサイロ・フェデレーション・ラーニング・セッティングにおいて,加算準同型セキュア和プロトコルと差分プライバシーを併用する。
提案手法により,非分散設定に匹敵する予測精度が得られることを示す。
論文 参考訳(メタデータ) (2020-07-10T18:15:10Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
私たちは、強力なプライバシー制約に対処できるディープラーニングフレームワークを導入します。
協調学習、差分プライバシー、同型暗号化に基づいて、提案手法は最先端技術に進化する。
論文 参考訳(メタデータ) (2020-06-16T19:31:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。