論文の概要: 3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching
between 3D and 2D Networks
- arxiv url: http://arxiv.org/abs/2307.16256v1
- Date: Sun, 30 Jul 2023 15:26:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 16:50:38.536720
- Title: 3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching
between 3D and 2D Networks
- Title(参考訳): 3dネットワークと2dネットワーク間のクロスティーチングによるスパースアノテーションを用いた3次元医用画像分割
- Authors: Heng Cai, Lei Qi, Qian Yu, Yinghuan Shi, Yang Gao
- Abstract要約: 本稿では,3次元ネットワークと2次元ネットワークの相互学習を用いて,スパースアノテーションから頑健に学習できるフレームワークを提案する。
MMWHSデータセットに対する実験結果から,本手法は最先端(SOTA)半教師付きセグメンテーション法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 26.29122638813974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation typically necessitates a large and precisely
annotated dataset. However, obtaining pixel-wise annotation is a
labor-intensive task that requires significant effort from domain experts,
making it challenging to obtain in practical clinical scenarios. In such
situations, reducing the amount of annotation required is a more practical
approach. One feasible direction is sparse annotation, which involves
annotating only a few slices, and has several advantages over traditional weak
annotation methods such as bounding boxes and scribbles, as it preserves exact
boundaries. However, learning from sparse annotation is challenging due to the
scarcity of supervision signals. To address this issue, we propose a framework
that can robustly learn from sparse annotation using the cross-teaching of both
3D and 2D networks. Considering the characteristic of these networks, we
develop two pseudo label selection strategies, which are hard-soft confidence
threshold and consistent label fusion. Our experimental results on the MMWHS
dataset demonstrate that our method outperforms the state-of-the-art (SOTA)
semi-supervised segmentation methods. Moreover, our approach achieves results
that are comparable to the fully-supervised upper bound result.
- Abstract(参考訳): 医用画像のセグメンテーションは通常、大きく正確な注釈付きデータセットを必要とする。
しかし、ピクセル単位でのアノテーションの取得は、ドメインの専門家からの多大な労力を要する労働集約的な作業であり、実用的な臨床シナリオの取得が困難である。
このような状況では、必要なアノテーションの量を減らすことがより実用的なアプローチである。
sparseアノテーションは、いくつかのスライスのみに注釈を付け、正確な境界を保存するため、バウンディングボックスやスクリブルのような従来の弱いアノテーションメソッドよりもいくつかの利点がある。
しかし,監督信号の不足のため,注意の疎通から学ぶことは困難である。
この問題に対処するために,3次元ネットワークと2次元ネットワークの相互学習を用いて,スパースアノテーションから頑健に学習できるフレームワークを提案する。
これらのネットワークの特徴を考慮し,ハードソフト信頼しきい値と一貫性のあるラベル融合の2つの擬似ラベル選択戦略を開発した。
MMWHSデータセットに対する実験結果から,本手法は最先端(SOTA)半教師付きセグメンテーション法よりも優れていることが示された。
さらに,本手法は,完全教師付き上限値に匹敵する結果が得られる。
関連論文リスト
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3Dセグメンテーションはコンピュータビジョンの中核的な問題である。
完全に教師されたトレーニングを採用するために、3Dポイントクラウドを密にラベル付けすることは、労働集約的で高価です。
半教師付きトレーニングは、ラベル付きデータの小さなセットのみを付与し、より大きなラベル付きデータセットを伴って、より実用的な代替手段を提供する。
論文 参考訳(メタデータ) (2024-09-12T14:54:31Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
相補的な2次元拡散モデルを用いた新しい3次元脳分割法を提案する。
私たちのゴールは、個々の主題に対して完全なラベルを必要とせずに、信頼性の高いセグメンテーション品質を達成することです。
論文 参考訳(メタデータ) (2024-07-17T06:14:53Z) - Weakly Supervised LiDAR Semantic Segmentation via Scatter Image Annotation [38.715754110667916]
画像アノテーションを用いたLiDARセマンティックセマンティックセマンティックセマンティクスを実装した。
また、パフォーマンスギャップを減らすための3つの重要な戦略を含むネットワークであるScatterNetを提案する。
本手法は,完全教師付き手法の95%以上の性能を達成するために,ラベル付き点の0.02%未満を必要とする。
論文 参考訳(メタデータ) (2024-04-19T13:01:30Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
合成訓練された2Dセマンティックセマンティックセグメンテーションネットワークから高レベル特徴情報を蒸留するアイデアに基づく画像誘導ネットワーク(IGNet)を提案する。
IGNetは、ScribbleKITTI上の弱い教師付きLiDARセマンティックセマンティックセグメンテーションの最先端の結果を達成し、8%のラベル付きポイントしか持たない完全な教師付きトレーニングに対して最大98%のパフォーマンスを誇っている。
論文 参考訳(メタデータ) (2023-11-27T07:57:29Z) - SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings [12.79344668998054]
正確な局所境界線とグローバルな形状コヒーレンスを実現するために,SwIPE(Segmentation with Implicit Patch Embeddings)を提案する。
その結果,最近の暗黙的アプローチよりもSwIPEは大幅に改善され,パラメータが10倍以上の最先端の離散手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-23T20:55:11Z) - Orthogonal Annotation Benefits Barely-supervised Medical Image
Segmentation [24.506059129303424]
半教師付き学習の最近の傾向は、3次元半教師付き医用画像セグメンテーションの性能を高めている。
これらの見解と隣接する3次元スライス間の本質的な類似性は、我々は新しいアノテーション方法を開発するきっかけとなった。
そこで我々は,Dense-Sparse Co-Training (DeSCO) というデュアルネットワーク・パラダイムを提案する。
論文 参考訳(メタデータ) (2023-03-23T08:10:25Z) - Image Understands Point Cloud: Weakly Supervised 3D Semantic
Segmentation via Association Learning [59.64695628433855]
ラベルのない画像から補完的な情報を取り入れた3次元セグメンテーションのための新しいクロスモダリティ弱教師付き手法を提案する。
基本的に、ラベルの小さな部分のパワーを最大化するために、アクティブなラベリング戦略を備えたデュアルブランチネットワークを設計する。
提案手法は,1%未満のアクティブなアノテーションで,最先端の完全教師付き競合よりも優れていた。
論文 参考訳(メタデータ) (2022-09-16T07:59:04Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
本稿では,1つのオブジェクトを1つのポイントでラベル付けするだけでよい,弱教師付き手法RWSegを提案する。
これらの疎いラベルにより、セマンティック情報とインスタンス情報を伝達する2つの分岐を持つ統一的なフレームワークを導入する。
具体的には、異なるインスタンスグラフ間の競合を促進するクロスグラフ競合ランダムウォークス(CRW)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-10T02:14:39Z) - Hypernet-Ensemble Learning of Segmentation Probability for Medical Image
Segmentation with Ambiguous Labels [8.841870931360585]
ディープラーニングのアプローチは、高い偏極ラベルの確率で予測を過信していることで有名です。
これは、人間のアノテーションであっても、固有のラベルのあいまいさを持つ多くのアプリケーションでは望ましくない。
実世界のシナリオにおける性能を犠牲にすることなくセグメント化確率推定を改善する新しい手法を提案する。
論文 参考訳(メタデータ) (2021-12-13T14:24:53Z) - Grasp-Oriented Fine-grained Cloth Segmentation without Real Supervision [66.56535902642085]
本稿では, 深度画像のみを用いて, 変形した衣服のきめ細かい領域検出の問題に取り組む。
最大で6つの意味領域を定義し, 首の縁, スリーブカフ, ヘム, 上と下をつかむ点を含む。
これらの部品のセグメント化とラベル付けを行うために,U-net ベースのネットワークを導入する。
合成データのみを用いてネットワークをトレーニングし、提案したDAが実データでトレーニングしたモデルと競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:31:20Z) - One Thing One Click: A Self-Training Approach for Weakly Supervised 3D
Semantic Segmentation [78.36781565047656]
私たちは、アノテーションーがオブジェクトごとに1ポイントだけラベルを付ける必要があることを意味する「One Thing One Click」を提案します。
グラフ伝搬モジュールによって促進されるトレーニングとラベル伝搬を反復的に行う。
私たちの結果は、完全に監督されたものと同等です。
論文 参考訳(メタデータ) (2021-04-06T02:27:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。