論文の概要: Distributionally Robust Safety Filter for Learning-Based Control in
Active Distribution Systems
- arxiv url: http://arxiv.org/abs/2307.16351v1
- Date: Mon, 31 Jul 2023 00:06:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 16:08:15.016691
- Title: Distributionally Robust Safety Filter for Learning-Based Control in
Active Distribution Systems
- Title(参考訳): 能動配電系統における学習制御のための分散ロバスト安全フィルタ
- Authors: Hoang Tien Nguyen, Dae-Hyun Choi
- Abstract要約: 本文は,DRLエージェントがトレーニング中に分散システムの制約違反を大幅に低減できる,普遍的分散堅牢な安全フィルタ(DRSF)を提案する。
DRSFは分散的に堅牢な最適化問題として定式化されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Operational constraint violations may occur when deep reinforcement learning
(DRL) agents interact with real-world active distribution systems to learn
their optimal policies during training. This letter presents a universal
distributionally robust safety filter (DRSF) using which any DRL agent can
reduce the constraint violations of distribution systems significantly during
training while maintaining near-optimal solutions. The DRSF is formulated as a
distributionally robust optimization problem with chance constraints of
operational limits. This problem aims to compute near-optimal actions that are
minimally modified from the optimal actions of DRL-based Volt/VAr control by
leveraging the distribution system model, thereby providing constraint
satisfaction guarantee with a probability level under the model uncertainty.
The performance of the proposed DRSF is verified using the IEEE 33-bus and
123-bus systems.
- Abstract(参考訳): 運用上の制約違反は、深層強化学習(drl)エージェントが実世界のアクティブ配信システムと相互作用して、トレーニング中に最適なポリシーを学ぶ場合に発生する。
本文は,DRLエージェントがほぼ最適解を維持しながら,トレーニング中の分散システムの制約違反を大幅に低減できる,普遍的分散堅牢な安全フィルタ(DRSF)を提案する。
DRSFは分散的に堅牢な最適化問題として定式化されている。
本課題は,DRLに基づくVolt/VAr制御の最適動作から最小限に修正された準最適動作を分散システムモデルを利用して計算し,モデルの不確実性の下で制約満足度を保証することを目的とする。
提案するDRSFの性能はIEEE 33-busと123-busシステムを用いて検証する。
関連論文リスト
- Diffusion Model Based Resource Allocation Strategy in Ultra-Reliable Wireless Networked Control Systems [10.177917426690701]
拡散モデルは、複雑なデータ分散をキャプチャするその能力を活用することによって、生成AIで大いに利用されている。
本稿では,無線ネットワーク制御システムのための新しい拡散モデルに基づく資源配分手法を提案する。
提案手法は,従来提案されていたDeep Reinforcement Learning (DRL) ベースの手法よりも高い性能を示し,全消費電力に関する最適性能を示した。
論文 参考訳(メタデータ) (2024-07-22T16:44:57Z) - Event-Triggered Reinforcement Learning Based Joint Resource Allocation for Ultra-Reliable Low-Latency V2X Communications [10.914558012458425]
6G対応車載ネットワークは、安全クリティカルな情報をタイムリーに提供するための低遅延通信(URLLC)を確保するという課題に直面している。
車両間通信システム(V2X)の従来のリソース割り当てスキームは、従来の復号法に基づくアルゴリズムに依存している。
論文 参考訳(メタデータ) (2024-07-18T23:55:07Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization [55.97310586039358]
拡散モデルは強化学習(Reinforcement Learning, RL)において、その強力な表現力と多モード性に対して広く注目を集めている。
モデルなし拡散に基づくオンラインRLアルゴリズムQ-weighted Variational Policy Optimization (QVPO)を提案する。
具体的には、ある条件下でのオンラインRLにおける政策目標の厳密な下限を証明できるQ重み付き変動損失を導入する。
また,オンラインインタラクションにおける拡散ポリシのばらつきを低減し,サンプル効率を向上させるための効率的な行動ポリシーも開発している。
論文 参考訳(メタデータ) (2024-05-25T10:45:46Z) - Learning Predictive Safety Filter via Decomposition of Robust Invariant
Set [6.94348936509225]
本稿では, RMPCとRL RLの併用による非線形システムの安全フィルタの合成について述べる。
本稿では,ロバストリーチ問題に対する政策アプローチを提案し,その複雑性を確立する。
論文 参考訳(メタデータ) (2023-11-12T08:11:28Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - A Constraint Enforcement Deep Reinforcement Learning Framework for
Optimal Energy Storage Systems Dispatch [0.0]
エネルギー貯蔵システム(ESS)の最適供給は、動的価格の変動、需要消費、再生可能エネルギーの発生による深刻な課題を提起する。
ディープニューラルネットワーク(DNN)の一般化機能を活用することで、ディープ強化学習(DRL)アルゴリズムは、分散ネットワークの性質に適応して応答する良質な制御モデルを学ぶことができる。
本稿では,オンライン操作における環境や行動空間の運用制約を厳格に実施しながら,継続的な行動空間を効果的に処理するDRLフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-26T17:12:04Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Model-based Safe Reinforcement Learning using Generalized Control
Barrier Function [6.556257209888797]
本稿では,制約付きRLのモデルに基づく実現性向上手法を提案する。
モデル情報を使用することで、実際の安全制約に違反することなく、ポリシーを安全に最適化することができる。
提案手法は最大4倍の制約違反を達成し、ベースライン制約RLアプローチよりも3.36倍の速度で収束する。
論文 参考訳(メタデータ) (2021-03-02T08:17:38Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
我々は,制約付きポリシー最適化(CPPO)の実装に基づくRLフレームワークであるGCPOを紹介する。
誘導制約付きRLは所望の最適値に近い高速収束を実現し,正確な報酬関数チューニングを必要とせず,最適かつ物理的に実現可能なロボット制御動作を実現することを示す。
論文 参考訳(メタデータ) (2020-02-22T10:15:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。