論文の概要: Deep Learning and Computer Vision for Glaucoma Detection: A Review
- arxiv url: http://arxiv.org/abs/2307.16528v1
- Date: Mon, 31 Jul 2023 09:49:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 15:12:02.969826
- Title: Deep Learning and Computer Vision for Glaucoma Detection: A Review
- Title(参考訳): 緑内障検出のためのディープラーニングとコンピュータビジョン
- Authors: Mona Ashtari-Majlan, Mohammad Mahdi Dehshibi, David Masip
- Abstract要約: 緑内障は世界中で不可逆的な盲目の原因となっている。
コンピュータビジョンとディープラーニングの最近の進歩は、自動評価の可能性を示している。
眼底,光コヒーレンス断層撮影,視野画像を用いたAIによる緑内障の診断に関する最近の研究について調査した。
- 参考スコア(独自算出の注目度): 0.8379286663107844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Glaucoma is the leading cause of irreversible blindness worldwide and poses
significant diagnostic challenges due to its reliance on subjective evaluation.
However, recent advances in computer vision and deep learning have demonstrated
the potential for automated assessment. In this paper, we survey recent studies
on AI-based glaucoma diagnosis using fundus, optical coherence tomography, and
visual field images, with a particular emphasis on deep learning-based methods.
We provide an updated taxonomy that organizes methods into architectural
paradigms and includes links to available source code to enhance the
reproducibility of the methods. Through rigorous benchmarking on widely-used
public datasets, we reveal performance gaps in generalizability, uncertainty
estimation, and multimodal integration. Additionally, our survey curates key
datasets while highlighting limitations such as scale, labeling
inconsistencies, and bias. We outline open research challenges and detail
promising directions for future studies. This survey is expected to be useful
for both AI researchers seeking to translate advances into practice and
ophthalmologists aiming to improve clinical workflows and diagnosis using the
latest AI outcomes.
- Abstract(参考訳): 緑内障は世界中で不可逆性失明の主要な原因であり、主観的評価に依存しているため、重要な診断上の課題を提起している。
しかし、近年のコンピュータビジョンとディープラーニングの進歩は、自動評価の可能性を示している。
本稿では, 眼底, 光コヒーレンストモグラフィ, 視野画像を用いたaiベースの緑内障診断について, 深層学習に基づく手法を特に重視した最近の研究について検討する。
我々は、メソッドをアーキテクチャパラダイムに整理し、メソッドの再現性を高めるために利用可能なソースコードへのリンクを含む、最新の分類法を提供する。
広く使われている公開データセットの厳密なベンチマークを通じて、一般化可能性、不確実性推定、マルチモーダル統合のパフォーマンスギャップを明らかにする。
さらに、調査は、スケール、ラベリングの不整合、バイアスといった制限を強調しながら、重要なデータセットをキュレートします。
我々は,今後の研究課題と今後の展望について概説する。
この調査は、最新のAI結果を使用して臨床ワークフローと診断を改善することを目的として、AI研究者と眼科医の両方にとって有用であると期待されている。
関連論文リスト
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Detection and Classification of Diabetic Retinopathy using Deep Learning
Algorithms for Segmentation to Facilitate Referral Recommendation for Test
and Treatment Prediction [0.0]
本研究は糖尿病網膜症(DR)の臨床的課題について考察する。
提案手法は、畳み込みニューラルネットワーク(CNN)を用いたトランスファーラーニングを利用して、単一の基礎写真を用いた自動DR検出を行う。
Jaccard、F1、リコール、精度、精度の高評価スコアは、網膜病理評価における診断能力を高めるモデルの可能性を示している。
論文 参考訳(メタデータ) (2024-01-05T11:19:24Z) - Exploring Deep Learning Techniques for Glaucoma Detection: A
Comprehensive Review [0.0]
緑内障は、世界中の視覚障害の主要な原因の1つである。
近年のディープラーニング手法の発展は緑内障検出の自動化の可能性を示している。
ディープラーニングアルゴリズムの使用は、緑内障検出の有効性、有用性、精度を大幅に向上させる可能性がある。
論文 参考訳(メタデータ) (2023-11-02T17:39:40Z) - Leveraging Semi-Supervised Graph Learning for Enhanced Diabetic
Retinopathy Detection [0.0]
糖尿病網膜症(DR: Diabetic Retinopathy)は、早期発見と治療の急激な必要性を浮き彫りにしている。
機械学習(ML)技術の最近の進歩は、DR検出における将来性を示しているが、ラベル付きデータの可用性は、しばしばパフォーマンスを制限している。
本研究では,DR検出に適したSemi-Supervised Graph Learning SSGLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-02T04:42:08Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Recent advances and clinical applications of deep learning in medical
image analysis [7.132678647070632]
我々は最近200以上の論文をレビュー・要約し、様々な医用画像解析タスクにおける深層学習手法の適用の概要を概観した。
特に,医用画像における最先端の非教師あり半教師あり深層学習の進歩と貢献を強調した。
論文 参考訳(メタデータ) (2021-05-27T18:05:12Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。