論文の概要: Exploring Deep Learning Techniques for Glaucoma Detection: A
Comprehensive Review
- arxiv url: http://arxiv.org/abs/2311.01425v1
- Date: Thu, 2 Nov 2023 17:39:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 12:21:33.125959
- Title: Exploring Deep Learning Techniques for Glaucoma Detection: A
Comprehensive Review
- Title(参考訳): 緑内障検出のための深層学習手法の概観
- Authors: Aized Amin Soofi, Fazal-e-Amin
- Abstract要約: 緑内障は、世界中の視覚障害の主要な原因の1つである。
近年のディープラーニング手法の発展は緑内障検出の自動化の可能性を示している。
ディープラーニングアルゴリズムの使用は、緑内障検出の有効性、有用性、精度を大幅に向上させる可能性がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Glaucoma is one of the primary causes of vision loss around the world,
necessitating accurate and efficient detection methods. Traditional manual
detection approaches have limitations in terms of cost, time, and subjectivity.
Recent developments in deep learning approaches demonstrate potential in
automating glaucoma detection by detecting relevant features from retinal
fundus images. This article provides a comprehensive overview of cutting-edge
deep learning methods used for the segmentation, classification, and detection
of glaucoma. By analyzing recent studies, the effectiveness and limitations of
these techniques are evaluated, key findings are highlighted, and potential
areas for further research are identified. The use of deep learning algorithms
may significantly improve the efficacy, usefulness, and accuracy of glaucoma
detection. The findings from this research contribute to the ongoing
advancements in automated glaucoma detection and have implications for
improving patient outcomes and reducing the global burden of glaucoma.
- Abstract(参考訳): 緑内障は世界中の視覚障害の主要な原因の1つであり、正確かつ効率的な検出方法を必要とする。
従来の手動検出アプローチは、コスト、時間、主観性の面で制限がある。
近年のディープラーニングアプローチの発展は網膜基底画像から関連する特徴を検出することにより緑内障検出の自動化の可能性を示している。
本稿では,緑内障の分類,分類,検出に使用される最先端の深層学習手法について概説する。
近年の研究では,これらの手法の有効性と限界が評価され,重要な知見が浮き彫りにされ,さらなる研究の可能性を秘めている。
深層学習アルゴリズムの使用は緑内障検出の有効性、有用性、正確性を大幅に改善する可能性がある。
本研究の知見は緑内障自動検出の継続的な進歩に寄与し,患者の予後改善と緑内障の世界的な負担軽減に寄与する。
関連論文リスト
- Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - A Comprehensive Review of Artificial Intelligence Applications in Major
Retinal Conditions [6.728206045751265]
本論文は視覚障害や視覚障害を引き起こす網膜疾患の系統的調査である。
網膜疾患を検出するための臨床と自動化の両方のアプローチをカバーしており、過去10年間の研究に焦点を当てている。
論文 参考訳(メタデータ) (2023-11-22T22:10:53Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
本稿では,3次元視線推定モデルから得られた視線表現を利用する,革新的なDeepFake検出手法であるGazeForensicsを紹介する。
実験の結果,提案したGazeForensicsは現在の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-13T04:48:33Z) - Deep Learning and Computer Vision for Glaucoma Detection: A Review [0.8379286663107844]
緑内障は世界中で不可逆的な盲目の原因となっている。
コンピュータビジョンとディープラーニングの最近の進歩は、自動評価の可能性を示している。
眼底,光コヒーレンス断層撮影,視野画像を用いたAIによる緑内障の診断に関する最近の研究について調査した。
論文 参考訳(メタデータ) (2023-07-31T09:49:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Automatic detection of glaucoma via fundus imaging and artificial
intelligence: A review [0.4215938932388722]
緑内障は世界中で不可逆的な視覚障害の原因となっている。
ファンダスイメージングは非侵襲的で低コストである。
人工知能は、光学カップとディスクの境界を自動的に見つけることができる。
論文 参考訳(メタデータ) (2022-04-12T07:47:13Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - MTCD: Cataract Detection via Near Infrared Eye Images [69.62768493464053]
白内障は一般的な眼疾患であり、盲目や視力障害の主な原因の1つである。
近赤外画像を用いた白内障検出のための新しいアルゴリズムを提案する。
深層学習に基づくアイセグメンテーションとマルチタスクネットワーク分類ネットワークについて述べる。
論文 参考訳(メタデータ) (2021-10-06T08:10:28Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - Regression and Learning with Pixel-wise Attention for Retinal Fundus
Glaucoma Segmentation and Detection [3.7687214264740994]
緑内障検出のための深層学習に基づく2つの自動アルゴリズムと光ディスクとカップセグメンテーションを提案する。
我々は、注意機構を利用して、正確な予測のためにピクセルワイドな特徴を学習する。
論文 参考訳(メタデータ) (2020-01-06T23:54:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。