論文の概要: On the Trustworthiness Landscape of State-of-the-art Generative Models:
A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2307.16680v2
- Date: Thu, 3 Aug 2023 03:23:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-04 11:18:00.266662
- Title: On the Trustworthiness Landscape of State-of-the-art Generative Models:
A Comprehensive Survey
- Title(参考訳): 最先端生成モデルの信頼性景観について--包括的調査
- Authors: Mingyuan Fan, Cen Chen, Chengyu Wang, Jun Huang
- Abstract要約: 拡散モデルと大きな言語モデルは、最先端の生成モデルとして現れている。
本稿では、プライバシ、セキュリティ、公正性、責任という4つの基本的な側面にまたがる、これらのモデルにまつわる長年の脅威と新興の脅威について検討する。
- 参考スコア(独自算出の注目度): 16.17005593549243
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Diffusion models and large language models have emerged as leading-edge
generative models and have sparked a revolutionary impact on various aspects of
human life. However, the practical implementation of these models has also
exposed inherent risks, highlighting their dual nature and raising concerns
regarding their trustworthiness. Despite the abundance of literature on this
subject, a comprehensive survey specifically delving into the intersection of
large-scale generative models and their trustworthiness remains largely absent.
To bridge this gap, This paper investigates both the long-standing and emerging
threats associated with these models across four fundamental dimensions:
privacy, security, fairness, and responsibility. In this way, we construct an
extensive map outlining the trustworthiness of these models, while also
providing practical recommendations and identifying future directions. These
efforts are crucial for promoting the trustworthy deployment of these models,
ultimately benefiting society as a whole.
- Abstract(参考訳): 拡散モデルと大規模言語モデルが最先端生成モデルとして登場し、人間の生活の様々な側面に革命的な影響を与えた。
しかしながら、これらのモデルの実践的な実装は、その二重性を強調し、信頼性に関する懸念を提起する固有のリスクも露呈している。
この主題に関する文献が豊富にあるにもかかわらず、大規模な生成モデルの交差を特に調査する総合的な調査は、ほとんど欠落している。
このギャップを埋めるために、この論文では、プライバシー、セキュリティ、公正性、責任という4つの基本的な側面にまたがる、これらのモデルにまつわる長年の脅威と新興の脅威を調査する。
このようにして,これらのモデルの信頼性を概説した詳細な地図を構築し,実用的な推薦と今後の方向性の特定を行う。
これらの取り組みは、これらのモデルの信頼できる展開を促進するのに不可欠であり、最終的には社会全体に利益をもたらす。
関連論文リスト
- New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - The Essential Role of Causality in Foundation World Models for Embodied AI [102.75402420915965]
身体的なAIエージェントは、さまざまな現実世界環境で新しいタスクを実行する能力を必要とします。
現在の基礎モデルは物理的相互作用を正確にモデル化することができないため、Embodied AIには不十分である。
因果関係の研究は、検証世界モデルの構築に寄与する。
論文 参考訳(メタデータ) (2024-02-06T17:15:33Z) - Typology of Risks of Generative Text-to-Image Models [1.933681537640272]
本稿では,DALL-EやMidjourneyといった現代テキスト・画像生成モデルにかかわる直接的なリスクと害について検討する。
これらのリスクの理解と治療に関する知識のギャップは,すでに解決されているものの,我々のレビューでは明らかである。
データバイアスから悪意のある使用まで、22の異なるリスクタイプを特定します。
論文 参考訳(メタデータ) (2023-07-08T20:33:30Z) - Conditioning Predictive Models: Risks and Strategies [1.3124513975412255]
我々は、生成的/予測的モデルを安全に利用するために何が必要なのか、決定的な参照を提供する。
我々は、大きな言語モデルは世界のこのような予測モデルとして理解できると考えている。
予測モデルに対する条件付けアプローチは、人間レベルの能力を引き出す最も安全な方法であると考えている。
論文 参考訳(メタデータ) (2023-02-02T00:06:36Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
フェアネスとロバストネスの間に二分法が存在することを示し、フェアネスを達成するとモデルロバストネスを減少させる。
非線形モデルと異なるアーキテクチャの実験は、複数の視覚領域における理論的発見を検証する。
フェアネスとロバストネスの良好なトレードオフを達成するためのモデルを構築するための,シンプルで効果的なソリューションを提案する。
論文 参考訳(メタデータ) (2022-11-21T19:55:35Z) - Membership Inference Attacks Against Text-to-image Generation Models [23.39695974954703]
本稿では,メンバシップ推論のレンズを用いたテキスト・画像生成モデルの最初のプライバシ解析を行う。
本稿では,メンバーシップ情報に関する3つの重要な直観と,それに応じて4つの攻撃手法を設計する。
提案した攻撃はいずれも大きな性能を達成でき、場合によっては精度が1に近い場合もあり、既存のメンバーシップ推論攻撃よりもはるかに深刻なリスクとなる。
論文 参考訳(メタデータ) (2022-10-03T14:31:39Z) - Predictability and Surprise in Large Generative Models [8.055204456718576]
大規模プレトレーニングは、有能で汎用的な生成モデルを作成するための技術として登場した。
本稿では,そのようなモデルの直観的特性を強調し,この特性の政策的含意について論じる。
論文 参考訳(メタデータ) (2022-02-15T23:21:23Z) - On the Opportunities and Risks of Foundation Models [256.61956234436553]
これらのモデルの基礎モデルは、批判的に中心的だが不完全な性格を根底から立証するものです。
本報告では,基礎モデルの可能性とリスクについて概説する。
これらの疑問に対処するためには、基礎モデルに関する重要な研究の多くは、深い学際的なコラボレーションが必要であると信じている。
論文 参考訳(メタデータ) (2021-08-16T17:50:08Z) - On Attribution of Deepfakes [25.334701225923517]
生成的敵ネットワークは メディアを効果的に 合成し 変更できるようにしました
現在、悪意のある個人は、これらの機械生成メディア(ディープフェイク)を使って、社会的言論を操っている。
そこで本研究では,各生成モデルのエントロピー源を最適化し,ディープフェイクをモデルの一つに属性付ける手法を提案する。
論文 参考訳(メタデータ) (2020-08-20T20:25:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。