論文の概要: Investigating and Improving Latent Density Segmentation Models for
Aleatoric Uncertainty Quantification in Medical Imaging
- arxiv url: http://arxiv.org/abs/2307.16694v3
- Date: Tue, 14 Nov 2023 16:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 18:40:27.663510
- Title: Investigating and Improving Latent Density Segmentation Models for
Aleatoric Uncertainty Quantification in Medical Imaging
- Title(参考訳): 医用画像における不確かさ定量化のための潜在密度セグメンテーションモデルの検討と改善
- Authors: M. M. Amaan Valiuddin, Christiaan G. A. Viviers, Ruud J. G. van Sloun,
Peter H. N. de With, and Fons van der Sommen
- Abstract要約: Sinkhorn PU-Net は Sinkhorn Divergence を用いてすべての潜在次元の均一性を促進する。
以上の結果から,SPU-Netは各種臨床分離問題の公開データセットにこれを適用することで,最大11%のパフォーマンス向上を達成できた。
- 参考スコア(独自算出の注目度): 21.311726807879456
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Data uncertainties, such as sensor noise or occlusions, can introduce
irreducible ambiguities in images, which result in varying, yet plausible,
semantic hypotheses. In Machine Learning, this ambiguity is commonly referred
to as aleatoric uncertainty. Latent density models can be utilized to address
this problem in image segmentation. The most popular approach is the
Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize
the conditional data log-likelihood Evidence Lower Bound. In this work, we
demonstrate that the PU- Net latent space is severely inhomogenous. As a
result, the effectiveness of gradient descent is inhibited and the model
becomes extremely sensitive to the localization of the latent space samples,
resulting in defective predictions. To address this, we present the Sinkhorn
PU-Net (SPU-Net), which uses the Sinkhorn Divergence to promote homogeneity
across all latent dimensions, effectively improving gradient-descent updates
and model robustness. Our results show that by applying this on public datasets
of various clinical segmentation problems, the SPU-Net receives up to 11%
performance gains compared against preceding latent variable models for
probabilistic segmentation on the Hungarian-Matched metric. The results
indicate that by encouraging a homogeneous latent space, one can significantly
improve latent density modeling for medical image segmentation.
- Abstract(参考訳): センサノイズやオクルージョンのようなデータの不確実性は、画像に既約曖昧性を導入し、その結果、様々な、しかしもっとも妥当なセマンティック仮説をもたらす。
機械学習では、この曖昧さは一般にアレタリック不確実性と呼ばれる。
潜在密度モデルは、画像分割におけるこの問題に対処するために利用できる。
最も一般的なアプローチは確率的u-net(pu-net)で、潜在正規密度を使って条件付きデータログライクな証拠を低限界に最適化する。
本研究ではPU-Net潜伏空間が極めて不均質であることを示す。
その結果, 勾配降下の有効性が抑制され, 潜在空間試料の局在に極めて敏感となり, 予測の欠陥が生じる。
そこで本研究では,Sinkhorn PU-Net (SPU-Net) を提案する。Sinkhorn Divergence を用いて,すべての潜伏次元の均一性を向上し,勾配の更新とモデルロバストネスを効果的に向上する。
以上の結果から,SPU-Netは,様々な臨床セグメント化問題の公開データセットにこれを適用することで,ハンガリー・マーチ計量の確率的セグメンテーションに先行する潜在変数モデルと比較して,最大11%の性能向上を達成できた。
その結果,均質な潜在空間を奨励することで,医用画像分割の潜在密度モデリングを著しく改善できることが示唆された。
関連論文リスト
- Generative Edge Detection with Stable Diffusion [52.870631376660924]
エッジ検出は一般的に、主に識別法によって対処されるピクセルレベルの分類問題と見なされる。
本稿では、事前学習した安定拡散モデルのポテンシャルを十分に活用して、GED(Generative Edge Detector)という新しい手法を提案する。
複数のデータセットに対して広範な実験を行い、競争性能を達成する。
論文 参考訳(メタデータ) (2024-10-04T01:52:23Z) - Inflationary Flows: Calibrated Bayesian Inference with Diffusion-Based Models [0.0]
本稿では,拡散モデルを用いてベイズ推定を行う方法を示す。
本稿では,新しいノイズスケジュールを用いて,標準的なDBMトレーニングを通じてそのようなマップを学習する方法を示す。
その結果は、低次元の潜在空間上で一意に定義される非常に表現性の高い生成モデルのクラスである。
論文 参考訳(メタデータ) (2024-07-11T19:58:19Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
異種データを用いた因果推論のための協調的逆確率スコア推定器を提案する。
異質性の増加に伴うメタアナリシスに基づく手法に対して,本手法は有意な改善を示した。
論文 参考訳(メタデータ) (2024-04-24T09:04:36Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
本稿では,従来の識別的アプローチのセマンティックセグメンテーション品質を,デノナイズ拡散生成モデルでモデル化したマスクを用いて改善することを提案する。
市販セグメンタを用いた先行モデルの評価を行い,ADE20KとCityscapesの実験結果から,本手法が競争力のある定量的性能を実現することを示す。
論文 参考訳(メタデータ) (2023-06-02T17:47:01Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
Denoising Diffusion Probabilistic Models に基づくセマンティックセグメンテーションのための条件カテゴリー拡散モデル(CCDM)を提案する。
以上の結果から,CCDMはLIDC上での最先端性能を実現し,従来のセグメンテーションデータセットであるCityscapesのベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-03-15T19:16:47Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
入力画像にあいまいさが存在する場合、セグメンテーションにおけるデータ独立不確実性(いわゆるアレタリック不確実性)を捉えることに重点を置いている。
本稿では,各専門家ネットワークがアレータティック不確実性の異なるモードを推定する,新しい専門家モデル(MoSE)を提案する。
We developed a Wasserstein-like loss that makes direct minimizes the distribution distance between the MoSE and ground truth annotations。
論文 参考訳(メタデータ) (2022-12-14T16:48:21Z) - Improving Aleatoric Uncertainty Quantification in Multi-Annotated
Medical Image Segmentation with Normalizing Flows [0.0]
医用画像のセグメンテーション応用における不確実性の定量化が不可欠である。
正規化フロー(NF)を導入して,より柔軟なアプローチを提案する。
我々は、確率的U-Netを採用し、NFで後続密度を増大させることで、より表現力のある仮説を立証する。
論文 参考訳(メタデータ) (2021-08-04T16:33:12Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
訓練された条件付き変分オートエンコーダの離散潜時空間をスパース化する問題を考察する。
顕在的理論を用いて、特定の入力条件から直接証拠を受け取る潜在クラスを特定し、そうでないクラスをフィルタリングする。
画像生成や人間の行動予測などの多様なタスクの実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-19T01:27:21Z) - Stochastic Segmentation Networks: Modelling Spatially Correlated
Aleatoric Uncertainty [32.33791302617957]
画像セグメンテーションネットワークアーキテクチャを用いてアレータティック不確実性をモデル化するための効率的な確率的手法であるセグメンテーションネットワーク(SSN)を導入する。
SSNは単一の画像に対して複数の空間的コヒーレント仮説を生成することができる。
2次元CTでは肺結節,3次元MRIでは脳腫瘍を含む実世界の医療データのセグメンテーションについて検討した。
論文 参考訳(メタデータ) (2020-06-10T18:06:41Z) - Discrete Variational Attention Models for Language Generation [51.88612022940496]
本稿では,言語における離散性に起因する注意機構のカテゴリー分布を考慮した離散的変動注意モデルを提案する。
離散性の特質により,提案手法の訓練は後部崩壊に支障を来さない。
論文 参考訳(メタデータ) (2020-04-21T05:49:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。