論文の概要: Towards Better Certified Segmentation via Diffusion Models
- arxiv url: http://arxiv.org/abs/2306.09949v1
- Date: Fri, 16 Jun 2023 16:30:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-19 13:02:08.625835
- Title: Towards Better Certified Segmentation via Diffusion Models
- Title(参考訳): 拡散モデルによる認定セグメンテーションの改善に向けて
- Authors: Othmane Laousy, Alexandre Araujo, Guillaume Chassagnon, Marie-Pierre
Revel, Siddharth Garg, Farshad Khorrami, Maria Vakalopoulou
- Abstract要約: セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
- 参考スコア(独自算出の注目度): 62.21617614504225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The robustness of image segmentation has been an important research topic in
the past few years as segmentation models have reached production-level
accuracy. However, like classification models, segmentation models can be
vulnerable to adversarial perturbations, which hinders their use in
critical-decision systems like healthcare or autonomous driving. Recently,
randomized smoothing has been proposed to certify segmentation predictions by
adding Gaussian noise to the input to obtain theoretical guarantees. However,
this method exhibits a trade-off between the amount of added noise and the
level of certification achieved. In this paper, we address the problem of
certifying segmentation prediction using a combination of randomized smoothing
and diffusion models. Our experiments show that combining randomized smoothing
and diffusion models significantly improves certified robustness, with results
indicating a mean improvement of 21 points in accuracy compared to previous
state-of-the-art methods on Pascal-Context and Cityscapes public datasets. Our
method is independent of the selected segmentation model and does not need any
additional specialized training procedure.
- Abstract(参考訳): 画像セグメンテーションの堅牢性は、セグメンテーションモデルが生産レベルの精度に達するにつれ、ここ数年で重要な研究トピックとなっている。
しかし、分類モデルと同様に、セグメンテーションモデルは敵の摂動に対して脆弱であり、医療や自律運転のような臨界判定システムでの使用を妨げる。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
しかし, この手法は, 付加雑音量と認定レベルとのトレードオフを示す。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
ランダム化スムース化モデルと拡散モデルを組み合わせることで,従来のPascal-ContextおよびCityscapesの公開データセットと比較して,21ポイントの精度向上を示す結果が得られた。
本手法は選択したセグメンテーションモデルとは独立であり,特別なトレーニング手順は不要である。
関連論文リスト
- Multi-scale Diffusion Denoised Smoothing [79.95360025953931]
ランダムな平滑化は、大規模モデルに敵対的ロバスト性を提供する、いくつかの具体的なアプローチの1つになっている。
本報告では, 分割平滑化におけるロバスト性と精度との現在のトレードオフに対処するスケーラブルな手法を提案する。
提案手法と拡散微細調整を併用したマルチスケール平滑化手法により,高騒音レベルで高い信頼性のロバスト性が得られることを示す。
論文 参考訳(メタデータ) (2023-10-25T17:11:21Z) - The Lipschitz-Variance-Margin Tradeoff for Enhanced Randomized Smoothing [85.85160896547698]
ディープニューラルネットワークの現実的な応用は、ノイズの多い入力や敵攻撃に直面した場合、その不安定な予測によって妨げられる。
入力にノイズ注入を頼りに、認証された半径を持つ効率的な分類器を設計する方法を示す。
新たな認証手法により、ランダムな平滑化による事前学習モデルの使用が可能となり、ゼロショット方式で現在の認証半径を効果的に改善できる。
論文 参考訳(メタデータ) (2023-09-28T22:41:47Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
本稿では,従来の識別的アプローチのセマンティックセグメンテーション品質を,デノナイズ拡散生成モデルでモデル化したマスクを用いて改善することを提案する。
市販セグメンタを用いた先行モデルの評価を行い,ADE20KとCityscapesの実験結果から,本手法が競争力のある定量的性能を実現することを示す。
論文 参考訳(メタデータ) (2023-06-02T17:47:01Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
セマンティックセグメンテーションキャリブレーションの問題について検討する。
モデルキャパシティ、作物サイズ、マルチスケールテスト、予測精度はキャリブレーションに影響を及ぼす。
我々は、単純で統一的で効果的なアプローチ、すなわち選択的スケーリングを提案する。
論文 参考訳(メタデータ) (2022-12-22T22:05:16Z) - Modeling Multimodal Aleatoric Uncertainty in Segmentation with Mixture
of Stochastic Expert [24.216869988183092]
入力画像にあいまいさが存在する場合、セグメンテーションにおけるデータ独立不確実性(いわゆるアレタリック不確実性)を捉えることに重点を置いている。
本稿では,各専門家ネットワークがアレータティック不確実性の異なるモードを推定する,新しい専門家モデル(MoSE)を提案する。
We developed a Wasserstein-like loss that makes direct minimizes the distribution distance between the MoSE and ground truth annotations。
論文 参考訳(メタデータ) (2022-12-14T16:48:21Z) - Trustworthy Medical Segmentation with Uncertainty Estimation [0.7829352305480285]
本稿では,セグメンテーションニューラルネットワークにおける不確実性定量化のための新しいベイズディープラーニングフレームワークを提案する。
我々は磁気共鳴イメージングとCTによる医用画像分割データについて検討した。
複数のベンチマークデータセットに対する実験により,提案するフレームワークは,最先端セグメンテーションモデルと比較して,ノイズや敵攻撃に対してより堅牢であることが示された。
論文 参考訳(メタデータ) (2021-11-10T22:46:05Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。